НАВЧАННЯ МОДЕЛІ МАШИННОГО НАВЧАННЯ ДЛЯ КЛІНІЧНИХ ДАНИХ IOT І СУМІСНОСТІ ПРИСТРОЇВ
Abstract
Data exploration, wrangling, and interactive analysis and visualization were made in an integrated way. How to plot feature importance in Python calculated by the XGBoost model was considered. Features engineering in a dataset has been improved with Haar Transform. The area under the receiver operating characteristic curve was increased from 0.44 for the base model to 0.82 for Haar Transform Model.

Радіоелектроніка та молодь у XXI столітті. Т. 6 : Конференція "Інформаційні інтелектуальні системи": матеріали 28-го Міжнар. молодіж. форуму, 16–18 квітня 2024 р.
Downloads
Pages
59-60
Published
December 12, 2024
Copyright (c) 2024 Press of the Kharkiv National University of Radioelectronics
Details about this monograph
ISBN-13 (15)
978-966-659-396-5