FORMATION OF ALTERNATIVE APPROACHES TO NOISE GENERATION IN GAN NETWORKS

Authors

N. Ryabova
Kharkiv National University of Radio Electronics
V. Bilokon
Kharkiv National University of Radio Electronics

Abstract

This work discusses the problem of developing alternative approaches to generating noise in generative adversarial networks (GAN). Various noise generation techniques are important for training GAN networks as they help improve the quality of the generated data and the stability of training. This article provides an overview of current noise generation methods and discusses an approach based on the Pandas library in the Python programming language for generating, storing, and mixing noises.


Радіоелектроніка та молодь у XXI столітті. Т. 6 : Конференція "Інформаційні інтелектуальні системи": матеріали 28-го Міжнар. молодіж. форуму, 16–18 квітня 2024 р.

Pages

94-96

Published

December 12, 2024

Details about this monograph

ISBN-13 (15)

978-966-659-396-5