АНОНІМІЗАЦІЯ ДАНИХ В ІНТЕЛЕКТУАЛЬНИХ МЕДИЧНИХ СИСТЕМАХ
Abstract
The importance of digitizing the medical sector and anonymizing medical data for safeguarding patient privacy cannot be overstated. This work explores machine learning methods for anonymizing medical data, focusing on techniques like Generative Adversarial Networks (GANs) and Perturbation Methods. It emphasizes the automated nature of these methods and their ability to maintain data utility while preserving patient confidentiality. Specifically, the application of GANs, such as medGAN, demonstrates their effectiveness in generating synthetic medical data and addressing data imbalance issues while ensuring patient privacy.

Радіоелектроніка та молодь у XXI столітті. Т. 6 : Конференція "Інформаційні інтелектуальні системи": матеріали 28-го Міжнар. молодіж. форуму, 16–18 квітня 2024 р.
Downloads
Pages
99-101
Published
December 12, 2024
Copyright (c) 2024 Press of the Kharkiv National University of Radioelectronics
Details about this monograph
ISBN-13 (15)
978-966-659-396-5