
151

DOI: https://doi.org/10.30837/MMP.2022.151

MULTIFLOWED SOFTWARE MOTION CONTROL TECHNOLOGY

FOR A TWO-LINK MANIPULATOR WITH FOUR DEGREES

OF FREEDOM

Novoselov S., Sychova O., Tesliuk S.

This paper describes a multiflowed software motion control technology for a two-link manipulator

with four degrees of freedom. The proposed technology uses a set of independent timers that allow

to realize independent control flows of program execution. This technology uses the developed

database structure to store the control program structure, which is a set of instructions, conditional

and unconditional transition operators, waiting commands with the possibility of connecting to

the PLC I/O ports via Modbus protocol. A characteristic feature of the proposed technology of

executing commands in the program is the concept of folders. Folders in this sense are a grouping

of commands that constitute a certain cyclic sequence of actions for the manipulator. Folders are

not a visual component, but the essence, uniting several commands, executed one after another,

in a database. An angular manipulator motion control program using visual components has

been developed. Testing of the developed program was carried out, which showed its performance

and reliability of the execution of commands given by the operator.

Introduction

Software control systems of manipulator movement are designed to create

programs to control the movement of manipulator links, remotely control the

device and visualize the current state of the moving mechanisms. The main task

of the software tool is to facilitate the process of creating control programs

and increase productivity by visualizing the motion of mechanical moving parts

of the manipulator [1–3].

When creating control programs, the characteristics of the specific type

of manipulator for which they are created are taken into account. Three basic

functions of data transformations are aimed at solving three standard configuration

problems of manipulator kinematics with protection of their solutions from

dangerous manipulator movements:

– сonversion of the angular configuration of manipulator links to Cartesian

coordinates of a selected point on the gripper axis;

– transformation of the manipulator target coordinates with the gripper target

parameters into the angular configuration of the manipulator links at the target point;

– linear interpolation of motion in Cartesian coordinates of the target vector

according to the specified values of angular configurations at the current and target

points of the planned motion of the manipulator gripper.

https://doi.org/10.30837/MMP.2022.151

152

The aim of the work is to create a software tool for motion control and

simulation of angular manipulators using visual components.

Multiflowed software manipulator motion control

The control object is a training model of a manipulator. The manipulator

contains two movable joints and can rotate around the vertical axis. The manipulator

also has a gripper for gripping and moving parts within its working area.

There are three stepper motors at the heart of the design. Each stepper motor

realizes a certain degree of freedom. The control module, based on the Arduino Mega

controller, controls the motors.

The manipulator has end sensors, one for each degree of freedom.

At the beginning of operation, the control system is initialized. This starts a test

run of each stepper motor and monitors the wear of the corresponding end sensor.

If all sensors are triggered, the device enters the mode of waiting for commands

from the user.

A simplified functional diagram of the industrial robot is shown in Fig. 1.

An industrial robot has a mechanical part (containing one or more manipulators)

and a control system for this mechanical part. In addition, the robot may have

sensing means (forming together an information-sensory system), whose signals

are fed into the control system [4, 5].

Fig. 1. Functional diagram of an industrial robot

153

As a rule, the executive mechanism of a manipulator is an open kinematic

chain, the links of which are connected to each other in series by different types

of joints. The combination and mutual arrangement of links and joints determine

the number of degrees of freedom and the scope of the robot’s manipulation system.

It is usually assumed that the first three joints in the executive mechanism

of the manipulator implement transport degrees of freedom (ensuring the presentation

of the working body to a given location); the others implement orientation degrees

of freedom (being responsible for the necessary orientation of the working device).

The structural diagram of the software is shown in Fig. 2.

Fig. 2. The structural diagram of the software mean

The basic modules of the program are: the main module, the program

execution module, the data communication module, the database module, and the

visualization module.

There are also six timers in the program that allow to implement independent

control flows of the program.

The program execution module organizes the operation of the instructions

stored in the database. The appropriate module is engaged to retrieve the next

command from the database. Each command is selected sequentially. The queue

controls an independent flow, for which the timer_Run timer is responsible.

When the next command is received, a command in G-Code format is prepared.

154

The following commands are involved in the program: positioning tool G0, turning

on gripper M5, turning off gripper M3, turning on pump M1, turning off pump M2,

turning off laser M6, turning off laser M7, turning on motor power M17, turning off

motor power M18, manipulator calibration G28.

The visualization module is used in the program emulation mode to visually

control the position of the manipulator links to facilitate setting the control program.

Each timer works independently. Synchronization is done with the

corresponding states stored in the status_exec variable.

The operation of the program is organized using independent execution flows.

Corresponding timers control each flow: timer_Moto, timer_Run, timer_Emulator,

timer_Wait, timer_COMresponse, timer_waitError.

The timer_Moto is designed to cut off the power to the stepper motors

if the manipulator is not used for a long time. The stepper motors used in the

construction have no mechanical brakes. Therefore, they can lower the manipulator

links to the bottom end position when the load turns off the power. In order to hold

the cargo in the set position, the stepper motor drivers are provided with the function

of switching on the holding current, which is 50% of the basic working current.

This is done to prevent excessive heating of the motor windings.

However, some drivers do not have a hold current reduction function.

In any case, to reduce the power consumption of the whole design it is appropriate

to power down the motors if they are not used for a long time. By default, the

timer_Moto interval in the program is set to 10s. This value is automatically

updated with each command sent.

Fig. 3 shows a state conditions diagram explaining how to use the

timer_Moto timer.

The main program flow calls the sendCommand function whenever

an instruction needs to be sent to the manipulator control module. This function

restarts the timer by setting a time interval of 10,000s.

When the wait time expires, it checks if there is communication with the

serial data transmission port. If there is no communication, a message is displayed

on the bar form status and the timer is turned off.

If there is communication, the corresponding G-Code is transmitted, which

causes the power to the stepper motors to be turned off. The timer is then turned

off and control is transferred to the main program flow.

The timer_Run timer is responsible for calling commands from the list that

makes up the manipulator control program (Fig. 4).

155

Fig. 3. Principle of timer_Moto usage

First, the current state of the status_exec variable is checked, which can have

the following values:

– «OK» – the previous command is completed correctly, the application is in

waiting state.

– «GET_OPERATION» – the program is in the state of searching for a new

command.

– «EXEC_OPERATION» – the program is in the state of executing the current

command.

– «STOP» – the program is in the state of completion.

A diagram of the state of the program execution process is shown in Figure 5.

A characteristic feature of the proposed method of executing commands in the

program is the concept of folders. Folders in this case are a grouping of commands

that make up a certain cyclic sequence of actions for the manipulator. Folders are not

a visual component, but the essence, uniting several commands, executed one after

another, in a database. Every program has at least one folder, which is the main

folder. This structure is created at the beginning of the job and contains all the

commands in the program.

Cycles can be used in the program. When a cycle is created, a new folder is

also created in which all the commands that make up the body of the cycle will be

156

placed. Folders can contain subfolders, which in turn can also contain folders.

Entering a folder means that the sequential course of commands is interrupted and a

new one becomes current - the cycle of commands entering the new folder.

Fig. 4. Algorithm of the program pointer processing method

In order to be able to return to the previous command cycle, a stack is

provided. The current program counter number is entered in the stack, and the ID

of the command first in the new branch (the first command in the new folder)

is passed to the counter. At the end of the cycle, the size of the stack is checked.

157

If it is greater than zero, the last entry, which is the return point to the previous

cycle, is taken from it.

Fig. 5. State diagram for the program execution process

After getting the stack number, we call the search method in the database to

find the identifier of the folder that contains the received command. After getting

the folder number, a list of all commands in it is generated and a new value

of the program counter is determined: cur_num_operation_exec++.

If the program counter number is out of the acceptable folder value

range, the stack size is checked again. If it is equal to zero, the application is

considered completed and the corresponding procedure with the value

«status_exec = «STOP» is started.

If the stack size is not zero, the program execution continues according

to the algorithm (Fig. 4) and the state diagram (Fig. 5).

The timer timer_Emulator runs only in emulation mode. Its purpose is to

produce a delay of 500 ms on each command responsible for the movement of the

manipulator links. This is done to visually assess the correctness of the commands

and the sequence of the commands.

158

It should be noted that timer_Emulator does not run when the manipulator

model is rendered on the computer screen. In this case, the sign of the completion

of the manipulator link movement command is determined in real time if the virtual

tool reaches a given point in space.

The timer timer_COMresponse is designed to organize the timing of the

command execution by the manipulator control module. With the help of this

timer after sending the Move command with the coordinates of movement of the

working tool the current time of its execution is displayed. The timer stops

after receiving a move confirmation from the control module in the form of one

of the response options:

– «HOMING COMPLETE» – it is received when the calibration of the

manipulator is completed.

– LINEAR MOVE» – accepted when the manipulator has finished moving

to the set position.

– «OK» – accepted in case of completing the work of the manipulator’s

executive tool.

In all of the above cases, the current state of the curr_action variable changes

to OK, which is an indication that the current state of the program is complete.

The timer timer_Wait is designed to delay the execution of instructions and

the «Wait» command of the same name. When the timer_Wait command is executed,

the argument of the current instruction is transmitted as a millisecond value.

The PC screen displays the message «Program Execution Delay for XX ms».

When the program delay is over, an acknowledgement curr_action=«OK»

is generated.

The timer timer_waitError is used to generate an error message when the

response from the manipulator control module is too long.

Development of a motion control program

for an angular type manipulator using visual components

To implement the project of manipulator control and implementation of

production equipment, it is necessary to present a functionally complete product

that can work without connecting to the Internet. Therefore, to create a database,

DBMS SQLite was chosen.

To store the project data, the table «Project» was developed. The project is

created at the beginning of the work and to it are tied to all of the subsequent

entities. One of the main entities is «Program». This entity is a description of the

159

manipulator control program, specifying all operators and arguments transferred

to them during the work.

The «SpecialPoint» table is used to store operational data about special points

that are frequently used in a project. Such points can be the initial reference

coordinate or the final coordinates of the working tool movement during the

manipulator operation.

The SetupDevice table is needed to store the settings of the manipulator

motion control program. Fig. 6 shows the database structure.

Fig. 6. Database structure

This figure shows the SetupDevice table in abbreviated form. The Params line

shows that there are several fields in the structure to store the necessary

parameters for the program to work. All tables are linked by the ID_Project field.

When a new project is created, a new database file of the specified structure is created.

Fig. 7 shows the interface of the program. The left side of the interface

is used to place commands to control the manipulator. A separate line that can be

dragged and dropped within the program segment, thus changing the course

of the program, represents each command. In the right side you can change

parameters of each command. The contents of this area of the interface depend

160

on the specific instruction. There are a total of six different types of instructions:

Move To, While, Repeat, IF, GoTo, WaitInput.

Fig. 7. The program interface and an example

of entering the «Move To» command parameters

The Move To command is used to move the manipulator tool to a given point

in space. This command requires the following parameters: move X coordinate,

move Y coordinate, move Z coordinate, move R coordinate, move S speed.

The XYZ coordinate specifies the position of the tool’s end point in 3D space.

The R coordinate is the parameter that defines the displacement of the manipulator

along the rail to which it is attached (if any).

The emulation mode provides a list of reference points. This list allows you to

remember the key positions of the manipulator, often repeated during its operation.

This list can be updated during the program operation. Points can be both added

to and removed from the list. All of them are stored in the database table.

Each point can be given a unique name to make it easy to identify during work.

Also in this mode it is possible to move the manipulator to a given point

without executing the whole program. Thus, the operator has the opportunity

to debug each step of the program during its creation in real time.

In order to read from the memory of the manipulator data about the current

state of its links and automatically fill data fields with corresponding real coordinates

a special button «Get current position» is provided.

161

The program also has a GoTo label. This parameter is used to assign a unique

identifier to a command, which is used to unconditionally jump to it from any line

in the program when using the GoTo statement.

The GoTo command allows you to jump from one command to another

using a unique identifier that begins with the letter L. There are nine possible

identifiers: L1...L9 respectively.

Using the command is simple enough: you must select the appropriate

letter from the drop-down list. After that the instruction will be written in the

command, for example, GoTo: Label=>L1.

The While command is one of two kinds of cycles. This cycle pauses

the execution of the program until the specified condition is met. As a condition,

it is implemented to wait for the set signal level to be set on the specified port

of the industrial controller.

You can select digital or analog input type. In the first case you can select

the input state either ON or OFF. If the input type is analog, you can set any

value from –35565 to 35565. Also for the analog signal you can set the comparison

signs «=», «>» and «<». In all cases you must specify the device address in modbus

protocol format and the number of the digital or analog contact in the PLC.

The Repeat cycle type allows you to specify the number of repetitions

for all the commands contained in the cycle body. All commands included

in the cycle body are included in the virtual folder that joins them. Each command

attached to a cycle can be moved by means of visual editing only within the

given cycle. The command can be moved out of the cycle only by executing

the «Cut» and «Paste» commands. All commands within a cycle are stored

in the database with a reference to this cycle in the ID_Folder field.

The IF command is a conditional statement and is another representative

of containers. This command decides whether a sequence of other commands

included in the container body will be executed or if they will all be skipped.

The conditional While command works directly with the PLC inputs. The ports are

accessed via RS-485 network using modbus protocol or via Ethernet network

using modbus TCP/IP. The condition of the IF command execution is the

specified state of the discrete or analog inputs of the PLC.

The Wait command allows you to implement one of two delays: a time delay

or a delay until a specified value is set on the specified PLC input.

When debugging a program to control a manipulator, animating the

movement of its links and working tool from one point to another is very useful.

Usually the task of 3D visualization requires the use of additional libraries

162

and computing power. When developing the program it was decided not to use

additional libraries, and to calculate the nodal points of the manipulator by means

of C# in real time, using the laws of inverse kinematics.

To simulate the position of manipulator links and visualize their motion

two views of the device are used: the top view and the side view (Fig. 8).

Fig. 8. Program interface in the manipulator simulation mode

These two views allow to estimate manipulator’s motion without using

isometric view of coordinate system. The difficulty in solving the problem is that the

manipulator can rotate around the vertical axis, so the side view will be a transformed

view of the vertical plane of vision.

Conclusion

This paper describes the developed technology of program control of robotic

manipulator, describes the developed language of visual programming of industrial

manipulator using multiflowed control of the processing of control commands.

The proposed technology uses a set of independent timers, allowing to realize

independent control flows of the program execution process. The process of task

163

distribution between the flows and synchronization algorithm are described.

The control object is a model of a robotic manipulator. The manipulator has

two movable joints and can rotate around the vertical axis. In addition, the

manipulator has a gripper for gripping and moving parts within its working area.

The peculiarity of the developed method is that no additional libraries are used,

and the calculation of the nodal points of the manipulator is performed by means of

the selected programming language in real time using the law of inverse kinematics.

References

1. S. Nair, A. Rajeswaran, V. Kumar, Ch. Finn, A. Gupta, «R3M: A Universal Visual

Representation for Robot Manipulation», arXiv:2203.12601v2 [cs.RO], 18 Apr. 2022.

2. S. Novoselov and O. Sychova, «Using Wireless Technology for Managing Distributed

Industrial Automation Objects within the Concept of Industry 4.0», 2019 IEEE International

Scientific-Practical Conference Problems of Infocommunications, Science and Technology

(PIC S&T), 2019, pp. 580–584, DOI: https://doi.org/10.1109/PICST47496.2019.9061333

3. S. Novoselov, O. Sychova and S. Tesliuk, «Development of the Method Local Navigation of

Mobile Robot a Based on the Tags with QR Code and Wireless Sensor Network», 2019 IEEE

XVth International Conference on the Perspective Technologies and Methods in MEMS

Design (MEMSTECH), Polyana, Ukraine, 2019, pp. 46–51.

4. Nevludov, O. Sychova, A. Andrusevich, S. Novoselov, D. Mospan and V. Mospan,

«Simulation of the Sensor Network of Base Stations in a Local Positioning System in

Intelligent Industries,» 2020 IEEE Problems of Automated Electrodrive. Theory and Practice

(PAEP), Kremenchuk, Ukraine, 2020, pp. 1–6.

5. Ostanin, Mikhail & Mikhel, Stanislav & Evlampiev, Alexey & Skvortsova, Valeria &

Klimchik, Alexandr. (2020). Human-robot interaction for robotic manipulator programming

in Mixed Reality. 2805–2811.

6. K. Inoue, Y. Nishihama, T. Arai and Y. Mae, «Mobile manipulation of humanoid robots-body

and leg control for dual arm manipulation», Proceedings 2002 IEEE International Conference

on Robotics and Automation (Cat. No.02CH37292), 2002, pp. 2259-2264 vol.3,

DOI: https://doi.org/10.1109/ROBOT.2002.1013568

7. S.-J. Yi, «Software Framework for an Intelligent Mobile Manipulation Robot», 2018

International Conference on Information and Communication Technology Robotics

(ICT-ROBOT), 2018, pp. 1–4. DOI: https://doi.org/10.1109/ICT-ROBOT.2018.8549895

8. B.-V. Mauricio, E. Belo, «Application of H∞ theory to a 6 DOF flight simulator motion

base». Journal of the Brazilian Society of Mechanical Sciences and Engineering. 2012,

Volume 34, pp. 193–204. DOI: https://doi.org/10.1590/S1678-58782012000200011

9. Wu, L.; Zhao, R.; Li, Y.; Chen, Y.-H. Optimal Design of Adaptive Robust Control for the

Delta Robot with Uncertainty: Fuzzy Set-Based Approach. Appl. Sci. 2020, 10, 3472.

DOI: https://doi.org/ 10.3390/app10103472

https://doi.org/10.1109/PICST47496.2019.9061333
https://doi.org/10.1109/ROBOT.2002.1013568
https://doi.org/10.1109/ICT-ROBOT.2018.8549895
https://doi.org/10.1590/S1678-58782012000200011

