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STRUCTURAL AND PARAMETRICAL SYNTHESIS  

OF THE LAWS OF CRITICAL CONTROL 

Timofeyev V., Khrustalova S., Khrustalev K., Yakushyk I. 

 

Practical results related to the structural and parametric synthesis of critical control laws  

are presented. It is shown that when synthesizing digital controllers, it is most expedient to use 

discrete spaces that allow taking into account restrictions on the amplitudes of input signals. 

Approaches to the synthesis of critical controllers are considered. It is shown that the synthesis 

procedure is associated with minimizing the maximum absolute value of the generalized  

output for all possible values of input signals. 

 

Introduction 
 

In the practice of managing dynamic objects, one often has to deal with 

situations when the object does not belong to either statistical or stochastic ones,  

but is described by a set of target inequalities, that is, they are so-called critical [1]. 

For the synthesis of a critical control system, preliminary construction  

of both models of the control object itself and the environment is required.  

And if the object model can be described in terms of «Input – output», then the 

influence of the environment can be taken into account using a special description  

of the signals acting on the object [2–5]. 

The choice of one or another way of describing external signals is decisive  

in choosing a specific method for synthesizing the control law. At present,  

spaces  ,L m   and  0 0, ,L N m   and are widely used, allowing to take into account 

restrictions on the amplitudes of input signals, and discrete spaces and, introducing 

restrictions on the space of the same signals. 

 

General structure of the control law 
 

Consider a discrete system  ,DS P C  and a discrete space of inputs E  . Let us 

set  ,w y w  and write down the ratio 

   , : , , ,v w C k v k w C k N  ,                               (1) 

which determines the relationship between the system output, external inputs and the 

structure of the control law C . 
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Then the efficiency of the functioning of such a system in the general case is 

determined by the criterion 

    sup :EJ C v k,w,C k N,w E   ,                             (2) 

or, in the first approximation, the maximum absolute value of the generalized  

output for all possible inputs  w E  on the time interval  k N . 

In critical control systems, the main goal is to maintain a sufficiently  

low level of the output signal over the entire control interval, which can be expressed 

in the form of the inequality 

 E dJ C   ,                                                (3) 

where d  – is a positive value that determines the maximum possible value of  EJ C . 

At the same time, as noted above, the real control problem is described  

by a set of criteria specified in the form of a system of inequalities. 

Consider the synthesis of a critical control law in the space of inputs  ,i iL m  , 

which ensures stable maintenance of the system of inequalities 

 , , 0,1,2, ,L i iJ C  m  i M   ,                                   (4) 

where the number M  specifies the number of all restrictions that must be maintained 

during the operation of the system. So, for example, if the input signal is 

      1
0.2 1 signw k k k


   for 0k T  and     0.1cos signw k k k   for 

0k T , where  k  and  k  – random variables with zero mathematical 

expectation, then the system of target inequalities can be specified in the form 

 

 

1

2

, ,

,2 .

L

L

J C

J C





 




 

Note also that in a problem with one criterion   1,LJ C    and inputs 

belonging to  ,1L  , the synthesis problem reduces to minimizing 

  1 min ,L
C

J C    

and is equivalent to an 11  optimization problem. 

Let the control object be described by ARMAX, a model of the form 

           dA q y k q B q u k C q w k  ,                           (5) 

where are polynomials  ,A R q n  with 0 1a   , and    ,B R q m  and  ,1C R q  

with 0 1C  ;   ;d N  y , u  and w  are the generalized output, the control and 

external disturbing signals, respectively. 



166 

We also assume that the polynomials A  and dq B  are coprime. Then the 

following equalities are true 

dAF q E C  ,                                             (6) 

dAQ q BP C  ,                                            (7) 

where the polynomials  , 1F R q d   with 0 1f  ,  , 1E R q n  , 

 , 1Q R q d m    with 0   1 q  ,  , 1P R q n  , C  are unique. 

Using the parametrization introduced in [3], we can write the structure of the 

control law :C y u  in the form 

  
1

1,dC P RA Q Rq B R A


    ,                            (8) 

where P  and Q  are determined by equation (7). 

Using (5) and (8), we can determine the relationship between the output signal 

 y k  and the external disturbing signal  w k  in the form 

     dy k Q Rq B w k  ,                                         (9) 

and also, to estimate the value of the optimization criterion 

 ,
n

d
L

A
J C m Q Rq B   ,                                   (10) 

where 1 1 1n m    . 

Estimate (10) can be obtained from the following considerations.  

We introduce a polynomial 

dH Q Rq B   

and write the expression following from (9) 

   
0

k

i
i

y k h w k i


  .                                              (11) 

Taking into account that  ,w L m  , and 1 1 1n m    and using Holder’s 

inequality, we can write 

 ,
n

d
L

A
J C m Q Rq B   .                                          (12) 

For each k N   there exists  * ,w L m  , defined by the relation 

 
 1 1

* sign , 0 ;

0, otherwise.

n

n n
i A ih H if i k

w k i
h

 
 

 





                     (13) 
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Substituting (13) into (11), we obtain 

 
1*

0
n

k
n n

i A
i

y k h H 




   

Since at k   

 
nA

y H   , 

then 

 ,
n

d
L

A
J C m Q Rq B   .                                 (14) 

Equation (10) follows from (12) and (14). 

In the most general case, a polynomial under control actions can be represented 

as a product 1 2B B  , where the zeros 1B  lie outside the unit circle, and the zeros 2B   

lie inside it. By setting 1R  RB  , we can introduce the ratio 

2
d dQ Rq B Q Rq B    , 

then, using (6) and (7), write down 

d
Q F Dq


  , 

where  , 1D R q m   . 

So since 

 2
d dQ Rq B F D RB q      

and 

 -
2

1
- -

n n
n

n nd
A AA

n
Q Rq B F D RB  ,                            (15) 

it can be seen that the minimization problem 
n

d

A
Q Rq B  can be reduced to 

minimization 
n

2 A
D RB , i.e. 

 
nn1 1

-d
2 AAR A R A

min Q- Rq B min D- RB
 

 
 

 
. 

Thus, the characteristics of the control law are determined by the properties  

of the polynomial R , i.e. instead  ,L iJ C m  of legal use  ,L iJ R m . In this case,  

the problem of synthesizing the control law can be reformulated as follows:  

for given polynomials  , 1D R q m  ,  2 ,B R q r  and  d N  find a polynomial 

R  that ensures the fulfillment of the system of inequalities 

 , , 0,1,...,L i iJ R m i M  .                                     (16) 
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Denote by the 0R  polynomial 1 R A  that ensures the fulfillment of (16). Then, 

as an admissible control law, one can use 

    
1

0 0 0
1 2 1

dC PB R A Q R q B B


    ,                            (17) 

in this case, in the general case, there may exist a set 1R A  satisfying (16). 

 

Synthesis of the optimal controller 
 

Let us consider the problem of optimizing the parameters of the control  

law (regulator) (17) in the proposal of the minimum-phase object (5) and show  

that the optimal controller can be written as 

 
10C E BF


 ,                                                   (18) 

while providing the minimum values of  0,L iJ C m  , i.e. 

 0 1 1
, , 1, 1,2,...,

ni
L i i i iA

J C m F n m i M
 

    , 

 
0

0 1 1
0 0 0 0

1

, , 1, 1,2,...,
n i

N

L i i iA
j

J C m F n m j N
 



    . 

Due to the fact that the control object is the minimum phase, 1B B ,  

and 2 1B  . Then 
0R D  provides a minimum 

ni
A

D R  because 0 0
ni

A
D R  . 

Substituting 
0R  into (17) and using (6) and (7), we can obtain the control  

law (18). Since, then 
0R D  from (15) it follows that 

1

1 0
2

1

min , 1,2,...,i

nn iin ni i

i
nin

AAA AR A

n

Q Rq B F D R B F i M



     

   
        

. 

Let us further consider a special but fairly common case of the input space 

 ,L  . From (15) it follows that 

 
1 1

11 1

2min min
d

A AAR A R A
Q Rq B F D RB



 
   

 
 
 

, 

those only the member 
1

2 A
D-RB  is subject to minimization. 
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Assume further that 2B  contains the only zero inside the unit circle 

 1 1q     . Then there exists  , 2R R q m   minimizing 
1

2 A
D-RB , i.e., 

 
   

1
2

, 2
min

A
R R q m

D RB D 
 

  ,                                 (19) 

the optimal value of which is determined by the expression 

     
1

0 1 1R D q D q 


    .                           (20) 

Since, 
1

2 2 A
D RB D RB


    for any 1R A  it is obvious that 

   
1

1 1

2 2min min
A

R A R A
D RB D RB


 

  . 

It is known [3, 4] that the choice 0R  according to (20) ensures the minimum  

of the left-hand side in (19), while 0
2D R B  it acquires the value  D  , while  

it is obvious that and 2D RB


  and 
1

2 A
D-RB  are also equal to  D  . 

Next, consider the situation when the polynomial  , 1D R q m  , and the 

coefficients of the unstable polynomial  2 ,B R q r  satisfy the condition 

1

0

r

r i
i

b b




  .                                                    (21) 

If   k m r  , then from the expression 

2H D RB   

should 

1 1 1 1 1

2 2 2 2 1 1 2 2

;

;

.

m r m r

m m r m r r r m r

m m m r r m r r m

h b r

h d b r b b r

h d b r b r b r



      

        



   

   







                (22) 

Introducing the estimate 

0

r k

k i
i

J h




  , 

from (22) one can obtain the inequality 

1

1
0

r

m r m r r i m r
i

J J b b r


   


  
 
 
 

 , 

from which, as a result of minimization, in turn, follows 

 
 

 
 

1

1
0, , 1

min min min

m r

r

m r m r r i m r
R R R R r R iq m r q m r

J J b b r





   
     

  
  
  
  

 .   (23) 
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Then from (21) and (23) it is obvious that 0m rr   , and 

 
 

 
 1

, , 1
min minm r m r

R R q m r R R q m r
J J  

    
 , 

those the optimal value R  belongs to  , 1R q m r  . 

Consider further the minimization problem 
1A

D RB under the assumption  

that the polynomial 2B  has an arbitrary shape. Let us show that, in the general case, 

there are upper and lower bounds for the value of the minimum 
1

2 A
D RB , i.e., 

   
1 1

1 1

2 2min min
A A

R A R A
D RB D RB D


 

    . 

It follows from the definition that •


and  
1A

•  

   
1

1 1

2 2min min
A

R A R A
D RB D RB


 

   , 

and since for R=0 we obtain the obvious inequality 

2 1D RB D   

then 

 
1 1

1

2min
A A

R A
D RB D


  . 

This circumstance allows us to use the H -optimization procedure to obtain 

the lower bound 
1

2 A
D RB . This bound can be very useful for assessing the 

possibility of ensuring the fulfillment of the inequality   1,LJ R   . 

Let us assume that  , 1D R q m  , and  2 ,B R q r  has r  different unstable 

roots. In this case, there is a finite 0N N such that 

 
 

 
1 1

1 0

2 2
,

min min
A A

R A R R q N
D RB D RB

 
   . 

Considering the polynomial 2H D RB   and minimizing the 
1A

H  norm,  

we can use the well-known result, which says that there is a finite 0M N  such  

that the optimal polynomial satisfies the condition 

   0 , 1,2,...i iH D i r   , 

where i  are zeros 2B , i.e.,   0iB   . 
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Since 0H D  the modulo is equal to 0
2R B , then  0

0,R R q M r  .  

It can be seen that 0R R  minimizes 
1

2 A
D RB , while 0 0N M r  . 

Let us further consider a numerical method for finding the parameters of the 

synthesized controller that ensures the fulfillment of the system of inequalities (4). 

Introducing the vector of coefficients of the polynomial 1R A   1 2, ,...
T

r r r

and, replacing  ,L iJ R m  by  ,L iJ r m , we can rewrite the system of criteria (16)  

in the form 

 ,L iJ r m  , 0,1,2,...,i M .                                (24) 

Denoting through iS  the set of all vectors of coefficients (controller 

parameters) that ensure the fulfillment of the i -th inequality 

  : ,i L i iS r J r m   , 

one can write the intersection of the sets 

0

M

i
i

S s


 ,                                                   (25) 

ensuring the fulfillment of the complete system (24). 

To find the set (25), we will use the moving boundary method. 

Let us first set   jr R j N   and apply the method of moving boundaries to 

find the parameters of the control law. If the solution cannot be found for jr R , 

then we assume 
1jr R   and repeat the search procedure again. The increase  

in order j  continues until a solution is found that satisfies (24). 

In some cases, the quality of the functioning of a critical system is determined 

mainly by only one of the criteria  ,L iJ r m , 0,1,2, ,i M  , which can be called  

the critical quality function. In this case, all other inequalities can be considered  

as constraints, which reduces the problem to the standard formulation  

adopted in optimization theory. To solve the problem, you can use both the 

considered method of moving boundaries and standard approaches adopted  

in non-linear programming. 

We also note that although the standard methods 
11  , 

2H   and H   

optimization cannot be directly used to solve the problem of critical controller 

synthesis, they can be applied at the stage of preliminary estimation of the  

constraints that determine the structure and parameters of the system.  

So, if   1 inf ,1LJ r   or   2 inf ,2LJ r  , with the help of these methods  
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it is possible to evaluate whether such a controller exists at all. If the answer  

is negative, the problem should be reformulated already at the stage of formulation. 

 

Synthesis of critical regulators 
 

Let us consider the problem of synthesis of discrete critical algorithms in the 

spaces of inputs  ,D m   or  0 0, ,D N m   according to the criterion 

    sup , , : ,EJ c v k w c k N w E   ,                       (26) 

associated with the maximum absolute value of the generalized output v  for all input 

signals w  in space E  for all moments k  of the control interval N  [6]. In this case,  

as before, we will define the input space  ,D m   as the set of all possible  

sequences w  such that 

 

 

sup : ,

,

k m

i k

w i k N

w k k N






  
    

  


   


 

where  0,   , m N ,      1w k w k w k    , and the complex space 

 0 0, ,D N m   as the set of sequences w  such that 

 

1

N
j

j

w w


  , 

where 
            1

01 01 02 02 0 0, ,..., , , ... ,
N

N Nw w w D m D m D m


      . 

In the general case, control algorithms related to criterion (26) are called 

critical ones [1], although there was no general approach to the synthesis  

of such procedures. A special case of critical control systems are critical regulators,  

in which there is no external setting signal. 

Let us consider a system  ,DS P C in which there is no external setting  

signal *y , i.e. the problem is reduced to stabilization of the output signal of the object 

in the vicinity of zero. In this case, the generalized output is replaced by the signal y , 

and the optimization criterion (26) takes the form 

    sup , , : ,DRJ C y k w C k N w D   ,                 (27) 

where the symbol D  denotes the input space  ,D m   or  0 0, ,D N m  . 

The task of synthesis is to find the control law :C y u  that minimizes  

the objective function DRJ . 
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To simplify the calculations, we put   1C q   in ARMAX – models of the 

object included in the system  ,DS P C , i.e. 

         dA q y k q B q u k w k  ,                             (28) 

where is a polynomial    ,A q R q n  with, 0 1a  ,    ,B q R q m , pure delay time 

d N  ; y , u  and w  are the output, control, and disturbing signals, respectively. 

Above, the validity of the identity 

      1dA q F q q E q   ,                                    (29) 

in which the polynomials    , 1F q R q d   with 0 1f   and    ,E q R q n   

are unique. 

Let us transform the description of the object (29) to the form of a d -step 

predictor, for which we multiply both parts of (29) by   dF q q  

               A q F q y k d F q B q u k F q w k d       ,              (30) 

after which, substituting identity (29) into (30), we obtain 

       

           

,

.

y k d k F q w k d

k E q y k F q B q u k





    


  

                      (31) 

It follows from relations (31) that  y k d  it contains two terms: one of them 

is determined by known past control actions and measured outputs, and the other 

depends only on unchanging perturbations. Since the polynomial  F q  has the order 

–1d , then all perturbations enter the description of the predictor with times  

greater than k , which in principle does not allow one to obtain estimates of the term 

from the measurement data    F q w k d  . 

Next, we return to the input space and consider the controller synthesis 

procedure for the case 0 1m d   . 

Set   iw i     for i N , where 0i  . Then for  ,w D m   the inequality 

1
k m

i
i k






 k N  . 

From (31) we further obtain the relations 

   1 2, ,...,i k k k dy k d           ,                  (32) 

where 

 
1

1 2
1

, ,...,
d

k k k d i k d i
i

f    


    


  , 
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whence it follows that the synthesis problem can be reduced to finding a vector 

 1 2, ,...,k k k d      that maximizes the function   or, what is the same,  

the objective linear function 

1

0

d

i k d i
i

f 


 

  

subject to restrictions 

0, 1,2,...,k i i d     

and 

1, 1, 2,...,
j m

i
i j

j k k k d m




      . 

As can be seen, the synthesis problem is reduced to a standard linear 

programming problem, which can be solved in a finite number of steps using the 

simplex method. As a result of the decision, the optimal vector  0 0 0
1 2, ,...,k k k d      

is obtained, leading to the value of the objective function 

  
1

0
1 2

0

max , ,...,
d

k k k d i k d i
i

f    


    


  . 

It is easy to see that the formulation of the linear programming problem  

does not change for all k N , so the optimal solutions  0 0 0
1 2, ,..., d    for all times k   

are the same. 

Let us denote these solutions in the form 0 0 0
1 2( , ,..., )d   , whence 

  
1

0
1 2

0

max , ,..., :
d

k k k d i d i
i

k N f    


   


   . 

Then we can rewrite (32) as 

   
1

0

0

d

i d i
i

y k d k f  





    , 

leading to an assessment of the quality of regulation 

    
1

0

0

sup :
d

DR i d i
i

J C k k N f  





    .                 (33) 

A special case of perturbation for this situation is  ,w D m  , defined  

by the relation 

     

 

* * 0

*

0, 0,

sign , 0 ,

, .

1

1

k d k

for k

w k w k d

w k d

k f for

k for

 



   










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Considering further the controller RC  in the form 

         F q B q u k E q y k    ,                             (34) 

one can see that   0k  , and 

 
1

* 0

0

, ,
d

R i d i
i

y d w C f  





  ,                                 (35) 

after which, using (33) and (35), we can conclude that the criterion value  DRJ C

cannot be less than  *, , Ry d w C . 

Thus, any controller that provides the value of the objective function 

 
1

0

0

d

DR R i d i
i

J C f  





   

and the value of the output signal 

     , , Ry k w C F q w k   

is critical. 

In the particular case for 0m  , it is easy to see that the vector of optimal 

solutions  0 0 0
1 2, ,..., d    is  1,1, ,1  , and the target solution takes the form 

1
0

0

d

i d i
i

f 




  

under restrictions 

0 1, 1,2,...,i i d   . 

Obviously, the optimal value of the criterion for 0m   is 

 
1

0

d

DR R i
i

J C f 




  . 

A more complicated situation arises in the case of 1m d  . From (31) it 

follows that 

       

     

0 1

1
1

( 1 ...

1 ,
k d

d A
i k

y k d k f w k d f w k d

f w k F q w i





 
 

         

    
 

or 

     
A

y k d k F q 


   . 

Taking into account (27), this inequality leads to an estimate of the control quality 

      sup :DR A
J C k k N F q 


   . 
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For perturbations * ( )  ,w D m   of the form  

 
 * , ,

0, ,

Msign if k M
w k

k M

f

if

 
 







 

where Mf  – is the largest of the values  0 1 1, ,..., df f f  , controller (34) leads to 

  0k   and the estimate 

   , , R M A
y d w C f F q 


   , 

those is also critical. 

Thus, it can be argued that the critical controller RC  is invariant to the 

parameters m and δ the input space  ,D m   . 

For the input space  0 0, ,D D N m   and perturbations  0 0, ,w D N m  , 

controller (34) is also critical. This can be shown by introducing the function 

 

 

1
0

0

, 0 1,

, 1,

d

i d i
iR

A

f k d
Q k

F q k d










  

 
  



 

after which, carrying out transformations similar to the previous one, we obtain 

   0 0
1

N

DR R R i i
i

J C Q m 


  , 

       
1

, ,
N

i
R

i

y k w C F q w k


  , 

where the polynomial is defined by relation (29). 

Thus, the introduced supremal controller ensures the quality of control 

 

   

   0
1

0 0 0

, ,

, .

,

, ,

R

NDR R
R i

i
i

Q for D D

J C
Q for D D

m m

m N m






















 

 

Conclusion 
 

Practical results related to the structural and parametric synthesis of  

critical control laws in various metric spaces are presented. The general structure  

of the critical control law is proposed. Approaches to the synthesis of critical 

controllers are considered. A procedure for the synthesis of critical controllers  

based on multi-step optimal predictors has been introduced and justified. A procedure 

for calculating the parameters of an optimal controller based on the solution  
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of a standard linear programming problem is proposed, and the optimality  

of the resulting solution is proved. The stability of a closed critical control system in 

the case of non-stationary external disturbances is analyzed. It is shown that  

after the end of the transient processes, the system «contracts» into a tube, the 

characteristics of which are determined both by the properties of the object  

itself (location of zeros and poles) and of the acting disturbances. 
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