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MODIFIED INSTRUMENTAL VARIABLES METHOD  

WITH SLIDING WINDOW 

Anishchenko A., Timofeyev V. Yakushyk I. 

 

The task of constructing a mathematical model of the object under study is not 

only of interest in itself, but is also part of the optimization problem, the quality of 

the solution of which depends significantly on the complexity of the model used. 

Therefore, in practice, it is often justified to simplify the mathematical model of 

an object and present it in the form of regression equations.  In this case, the problem 

of estimating model parameters of the form 

*
n n n nY X C                                                (1) 

where  1 2, ,...,
T

n nY y y y  is the vector of output signals 1n ;  

 1 2, ,...,T T T
n nX x x x  – matrices of input variables n N ;  * * * *

1 2, ,...,
T

n n n NnC c c c – 

vector of estimated parameters 1N  ;  1 2, ,...,
T

n n     – interference vector;  

n  is discrete time and, subject to the usual assumptions of classical regression 

analysis, can be successfully solved using the least squares method (LSM).  

In this case, the essential assumptions are the absence of correlation between useful 

signals and interference, the absence of interference in the observed visible signals 

and the constancy of the estimated parameters *c . 

If, in the presence of correlated noise, the use of a generalized OLS  

is quite effective, then violation of other assumptions sharply reduces the 

effectiveness of the OLS. 

Thus, if variables are measured with noise and there is a correlation between 

them, OLS estimates will be biased. In this case, it is advisable to use methods based 

on the use of specifically selected instrumental variables [1]. The instrumental 

variable method (IVM) estimate has the form 

 
T

T T
n n n n nC W X W Y


  ,                                             (2) 

where nW  is the n N  matrix of instrumental variables. 

In [2], a modification of the MIP was proposed, constructed by analogy with 

the generalized LSM and effective with corrected interference  n . 
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If the assumption of stationarity of parameters is violated, then the assessment, 

firstly, must be recurrent and, secondly, contain some mechanism for assessing  

the value of the information used. Such a mechanism can be either exponential 

weighting of information, which gives greater weight to newly received information, 

or some kind of sliding window, which also gives equal weight to a certain  

(usually fixed) amount of information taken into account [3]. 

An exponentially weighted recurrent MIP can be obtained by analogy  

with [2]. The goal of this work is to obtain a rcurrent form of MIP (RMIP)  

with a sliding window. 

Let us denote the estimate obtained at the n -step over L  previous steps,  

by analogy with [4] as follows: 

 
T

T T
n L n L n Ln L n L

C W X W Y


  ,                         (3) 

where  
1

1, ,...,T T T
n L n L n L nX x x x



   ,  
1

/ 1, ,...,T T T
n L n L n L nW W W W



    are 

 N n L   matrices;  
1

/ 1, ,...,T T T
n L n L n L nY y y y



    – vector –n L ; L n  is the 

size of the sliding window (memory of the algorithm). 

For the purpose of recurring forms, the modification of MMP is necessary 

obtained  1jn n   – step by L  measuring, 

         1 1 11 1

T
T T

n L n L n Ln L n L
C W X W Y



   

 
  
 

                               (4) 

If you move to (4) the matrix and the vector are the same size as those in (3).  

If the ocean is half-way  1n  -thous, it will take a larger number of measurements 

No, you can read the following statement: 

     
1

1 1 1 11
T T T T T

n L n n n L n L n L n n n L n Ln L n L n L
C W X w x w x W Y w x w y



             . (5) 

As can be seen from (5) and as noted in [4], a feature of algorithms with a fixed 

window is that the observation matrix n LX  (and, therefore, the IP n LW  matrix)  

and the vector n LY  at each step are formed either by including newly received 

information  1 1n nx w   and 1ny   or by initially eliminating outdated information 

and then introducing new information.  

The corresponding algorithms implement the "accumulation-reset" and  

"reset-accumulation" rules. 
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In this case, the arrival of a new observation at the  1n  th step allows us  

to obtain a new estimate for the  1L  th observation 

                   

1

1 1 1 1 1 11 1 1 1
T T

n L n L n Ln L n L
C W X W Y



        

 
  
 

       (6) 

where      11 1
T

n L nn LX X x    ,      1 1
T

n L n Ln LW X w     are  1N L   

matrices. 

Let's denote 

 
1

T
n L n Ln L

P W X


 .                                            (7) 

Then (6) will take the form 

               1 1 1 1 1 1 1 1n L n L n L n LC P W Y                          (8) 

Where 

    1 11 1
T

n L n nn LP P w x      .                                      (9) 

     
   

   
   

1 1

1 1 1 1 1
1 1

.
1

n Ln L T
n L n Ln L n L n LT

n L n Ln L

P w
c c y c x

x P w

 
     

  

 
   

 
 

Applying the matrix inversion lemma to (9), we obtain 

   
1 1

1 1
1 1

,
1

T
n L n n n L

n Ln L T
n n L n

P w x P
P P

x P w

 
 

 

 


 

and substituting (10) into (8) and taking into account the block representation and, 

after simple transformations we have the following expression for the estimate 

corresponding to the accumulation of information 

     1
1 11 1

1 1

.
1

n L n T
n L n nn L n LT

n n L n

P w
c c y c x

x P w


  

 

  


 

If outdated information is reset, the dimension of the matrices and vectors used 

in constructing the assessment decreases. Wherein 

     1 1 1
T

n L n Ln L n LP P w x      

or after applying the matrix inversion lemma 

     
       

   

1 1 1 1

1 1 1
1 11

T
n L n Ln L n L

n L n L T
n L n Ln L

P w x P
P P

x P w

    

  
  

 


. 
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The corresponding expression for the estimate after simple transformations  

will have the form 

     
   

   
   

1 1

1 1 1 1 1
1 1

.
1

n Ln L T
n L n Ln L n L n LT

n L n Ln L

P w
c c y c x

x P w

 
     

  

 
   

 
 

Thus, the recurrent MIP algorithm with a sliding window includes  

two procedures, the first of which, described by expressions (10) and (11), 

corresponds to the accumulation of new information (calculation of an auxiliary 

estimate when new information arrives), and the second, represented by relations (12) 

and (13), – resetting the outdated one. 

The following must be said about the choice of initial values of the matrix 

(namely, for this algorithm it is involved in the calculations of matrices and).  

Since this algorithm starts working only after the number of observations becomes 

equal to the number of unknown parameters, i.e. at the initial stage coincides with  

the usual RMIP, then the choice occurs as in the usual RMIP. 

By analogy with the above, it is not difficult to obtain relations for the RMIP 

algorithm with a sliding window, operating according to the "dump-accumulate" rule. 
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