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The work is devoted to assessing the challenges and advancements in 

microscopy data analysis, focusing on cell tracking, object detection, lineage 
reconstruction, and the application of machine learning. It highlights the 
difficulties in accurate lineage reconstruction, the importance of metrics in 
assessing tracking algorithms, and the role of machine learning in proposing 
hypotheses and understanding complex biological systems. 

 
Deciphering how cells self-organize is crucial in biology. Single-cell 

biology, illuminating processes from development to diseases, relies on 
computational algorithms for spatial and temporal cell biology quantification. 
Light-sheet microscopy's recent advancements, including multiple biochemical 
reporters like B.Yang, A.R. Jamieson, and others, produce volumetric time-lapse 
data with rich experimental imagery, surpassing current data extraction 
capabilities. 

In recent years, machine learning (ML) has transformed microscopy data 
analysis, improving tasks like cell segmentation and denoising. Despite 
advancements in cell tracking, accurately capturing multi-generational lineages 
remains a challenge [1]. Current approaches use a tracking-by-detection 
paradigm, detecting and linking cells over time. 

With the advent of convolutional neural networks (CNNs), the cell 
detection step has seen significant progress in recent years. Generalized 
segmentation and detection algorithms such as U-Net, Mask R-CNN, YOLO, 
Segment Anything [2] or more specialized cell-specific algorithms such as 
DeepCell, Cellpose and StarDi st are now able to detect cells with great 
accuracy, even in complex multidimensional data. 

Unlike tracking-by-detection algorithms relying on heuristics, this 
approach prioritizes quantifying cell biology over precise tracking accuracy. It 
lacks flexibility with new data but posits that machine learning advancements 
enable learning cell behavior models by framing tracking as a learnable task [3]. 

Cell tracking necessitates two types of annotations: spatial-temporal 
marking of individual cells and detailing their temporal linking. Manual 
annotation acquisition is labor-intensive, with reports of weeks to years spent 
annotating datasets for training. For 3D + t datasets, annotations are scarcer, 
often providing a sparse "gold standard". Benchmarking against this limited 
gold standard may overlook improvements in diverse cellular behaviors. 
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To enhance annotated data, crowd-sourcing annotations are on the rise, 
emphasizing the importance of active label cleaning for improved dataset 
quality. High-quality datasets increase through efforts like the Cell Tracking 
Challenge (CTC) and the Multiple Object Tracking (MOT) benchmark, 
capturing varied cell types and contributing to repositories. 

The tracking data, represented as a directed acyclic graph (DAG), forms  
G hypothesis = ⟨V, E⟩, capturing cell division events. The algorithm seeks G 
solution ⊂ G hypothesis to minimize tracking errors and depict cell motion, 
mitosis, and apoptosis, posing challenges in detection linking and lineage 
reconstruction. 

In the tracking-by-detection paradigm, a greedy assignment strategy 
utilizes a cost matrix (C) for edges between vertices at consecutive time points. 
Solving the Linear Assignment Problem (LAP) involves algorithms like 
Hungarian or Jonker-Volgenant, but their O (n3) time complexity hinders large 
datasets. 

Constructing the vital cost matrix C initially considers spatial distance, later 
incorporating advanced functions like Kalman filters or local flow. Despite 
improvements, there's room for further feature inclusion in C. This falls under 
local tracking, spatially global but not temporally. In contrast, global tracking 
considers the entire hypothesis graph while identifying the optimal set of edges. 

In long-movie cell tracking, accurate lineage reconstruction is challenging 
[4]. It relies on precise object detection and hypothesis graph construction for 
mitosis events, making it more error-prone than reconstructing single-cell tracks. 
Measuring tracking errors is crucial, with metrics playing a key role in machine 
learning training loops. Common errors include inaccuracies in object detection, 
leading to impactful false negatives and positives, influencing G hypothesis 
construction and lineage tree accuracy. Several metrics assess cell tracking 
algorithms, with lineage-specific metrics like "branching correctness" (MBC) 
and "leaf retrieval score" (LRS, benchmarked at 0.75) providing user-intuitive 
insights into tracking performance. These metrics are implemented in open-
source packages like Traccuracy. 

Tracking 10 cells in a 10-frame movie yields an impractical 10^9 potential 
solutions in the hypothesis graph (G hypothesis) for larger datasets. Machine 
learning treats tracking as a learnable task with representation and hypothesis 
graph components. Recent discrete optimization methods include the Viterbi 
algorithm and Linear Programming (LP). The widely used Integer LP (ILP) 
relies on user-provided rules, leading to exponential complexity in novel 
datasets, indicating incorrect assumptions. 

The goal of future ML systems is to intelligently propose hypotheses, 
reducing the search space rather than enumerating all possibilities. Self-
supervised methods in recent studies show potential for predicting cellular 
events from image data. ML-enhanced tracking algorithms could leverage these 
predictions, and fusion of deep learning with combinatorial solvers offers an 
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end-to-end tracking pipeline. Our research aims to understand cell behavior in 
complex biological systems using ML as a framework to learn aspects of it [4]. 
Efforts in computer vision explore end-to-end ML tracking algorithms, like 
global tracking transformers, but they require large training datasets [2] and 
currently overlook important hypotheses like branching events. Model 
explainability is crucial in scientific applications, and the open sharing of trained 
models, metrics, and data is essential for driving scientific progress. ML 
promises to uncover insights in complex biological systems, allowing the 
automated discovery of novel cellular dynamics. 
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