

257

UDC 004.89 DOI: https://doi.org/10.30837/IYF.IIS.2024.257
INTELLIGENT ANALYSIS USAGE IN AUTOMATED

GRADING SYSTEMS
Seliutin D. A.

Scientific adviser – Candidate of Science, Associate Professor, Yashyna O. S.
National Aerospace University «Kharkiv Aviation Institute», Department of
Computer Sciences and Information Technologies of the Faculty of Aircraft

Management Systems, Kharkiv, Ukraine
e-mail: denisselutinds@gmail.com

Technology integration in education has grown in a more important role
during the COVID-19 epidemic. As standard manual grading techniques have
been shown to be insufficient – automation grading provides a more effective
approach. However, assessing programming activities is challenging because
students employ a variety of coding styles and technical stacks. Manual
evaluation offers flexibility but lacks consistency and scalability. Furthermore,
advanced levels of programming skill requires completely new approaches to task
assessment. To solve these issues, improved approaches including both dynamic
and static code analysis, reinforced by machine learning techniques, are essential.

Technology integration in the dynamic educational landscape has

transformed teaching, learning, and data assessment. Automating workout
grading technology is a major advancement and innovation that takes place
during COVID-19. Traditional manual grading methods sometimes are
inadequate for current education. Automation offers a more efficient solution
and allows for personalized learning and innovative teaching methods.

The variety of task solutions, coding methodologies, and technology stacks
make programming language learning manual assessment less strict in offering
comments. Meanwhile, manual assessment depends heavily on many human
variables in the educational process, such as manual verification by teachers for
task feedback and the use of different technological stacks that may result in the
rejection of assignments.

This leads to being essential for students to have the freedom to explore
different approaches and not be limited by predefined technology stacks or
frameworks set by teachers when learning programming languages, data
analysis, or AI-related courses. This allows them to reach their goals
independently or at least understand the boundaries they need to work within.

Nevertheless, automation of task assessment is a challenging issue because
of the complexity of programming code and the diverse approaches that can be
used to perform a task or hindering automation systems from providing accurate
feedback [1]. The challenges are connected to a way of assessing a written code
as a part of programming exercises because code can be provided as an entire
program or just a section of it.

https://doi.org/10.30837/IYF.IIS.2024.257
mailto:denisselutinds@gmail.com

258

The idea that students have produced code and merely need to add a
missing component [2] simplifies assessment but reduces instructional and
practical value. This method is sufficient for learning programming language
syntax, vocabulary, and basics. How about advanced levels where students write
contract-based code? The solution to this complicated verification is unknown
due to several limitations and can be named as advance code task assessment.

Advanced code task assessment needs test coverage and code analysis [1].
Heuristics or intellectual code analysis can help identify the core cause of
execution errors and logical errors that caused assessment failures when
dynamic and static code analysis simply found quality code metrics. This type of
intellectual code examination involves machine learning.

Code identification and breakdown using machine learning use
categorization and natural language processing instead of static code parsing and
interpretation. Research shows that RNN-based deep learning models are the
most common way for this type of evaluation [3]. LSTM- and GRU-based
models may achieve the same goal with less precision. These methods generate
a vector representation of the code that can be customized using features and
training. Vectors can identify error-causing, style-changing, and logically
challenging code. [4].

To comprehend the components, examine them next. This knowledge can
be compared to the teacher's expected structure or other task execution
frameworks. This helps create and distribute a student's most important
resource: a coding problem-solving guide. This method improves automated
evaluation tools by using intelligence analysis with neural networks to discover
code flaws and give students useful feedback without teacher intervention.

The research conducted suggests enhancing current code assessment
methods by intelligent analysis with deep learning. This enables development of
flexible and responsive programming tools for learning.

References:
1. Ala-Mutka K. A survey of automated assessment approaches for

programming assignments // Computer Science Education. 2005. Vol. 15,
No. 2. P. 83–102.

2. Automatic Generation and Grading of Programming Exercises / Andy
DuFrene. California Polytechnic State University, 2016. URL:
https://core.ac.uk/display/77510984 (дата звернення: 23.02.2024).

3. Tushar S., Maria K., Stefanos G., Rohit T., Indira V., Hadi M., Federica
S. A survey on machine learning techniques applied to source code // Journal of
Systems and Software. 2024. Vol. 209.

4. Ahire P., Abraham J. Perceive Core Logical Blocks of a C Program
Automatically for Source Code Transformations // Intelligent Systems Design
and Applications. Cham, 2020. P. 386–400.

