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Abstract 
A difference model approximating a semi-linear descriptor control system with continuous time is studied 
to enable further application of the results in developing neural networks. An algorithm has been 
developed to transform the implicit difference equation so that, in its linear part, the original regular 
characteristic pencil of two matrices is converted into a normalized pencil with an identity matrix as the 
free term and a certain "informational" matrix ܶ associated with the spectral parameter. One of the key 
steps in the algorithm involves reducing the matrix ܶ to its Jordan form with a special arrangement of 
Jordan blocks. An example of a descriptor dynamic system in an electrical network is considered. 
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The article examines a semi-linear descriptor dynamic control system. The analysis includes the 
original system and its evolution law, as well as a transformation to another system whose state 
and evolution significantly simplify the application of neural networks for predicting the states 
of the original system. As an example of application, a descriptor system in an electrical network 
is considered. 

1. Normalized difference approximation

A semi-linear descriptor control system is considered, where the state vector function (ݐ)ݔ ∈
ℝ௡, ݐ ∈ [0,  satisfies the implicit differential-algebraic equation (ߠ

݀
ݐ݀

൫ܣ଴(ݐ)ݔ൯ + (ݐ)ݔ଴ܤ = ൯(ݐ)ݔ൫ܨ + . (ݐ)ݑ଴ܮ (1) 

For the theory of differential-algebraic equations and their applications, we refer to [1,2]. In 
equation (1) ܨ: ℝ௡ → ℝ௡  is assumed to be a nonlinear mapping, (ݐ)ݑ ∈ ℝ௟(∀ݐ),  ଴ is a matrix ofܮ 
size ݊ × ଴ܣߣ ,݈ + ݊ ଴ is a regular pencil ofܤ × ݊-matrices, ܣ଴ ≠ ૙. The finite spectrum of the pencil 
଴ߪ = ,଴ܣ)ߪ (଴ܤ = ൛ߣ௝ൟ consists of its eigenvalues ߣ௝ — the roots of the characteristic polynomial 
(ߣ)଴݌ = ଴ܣߣ)ݐ݁݀ +  ଴). All other points in the plane ℂ form the set of regular pointsܤ
ߩ = ,଴ܣ)ߩ (଴ܤ = ℂ ∖ ଴ܣ) ߪ , ଴ܣߣ) ଴), at each of which the inverse matrixܤ + ,଴)ିଵܤ ߣ ∈  .exists ߩ

For the difference approximation of equation (1) with a constant time step Δ > 0, a set of 
isolated points {t୩} is chosen in the interval [0, θ) :  ݐ௞ = ݇ ⋅ ݇   ,߂ = 0,1,2, … Replacing the 
differentials in (1) with finite differences at points ݐ௞  and denoting ݔ௞ = ,(௞ݐ)ݔ ௞ݑ =  we , (௞ݐ)ݑ
obtain the difference equation: 

௞ାଵݔ଴ܣଵି߂ + ௞ݔ଴ܤ − ௞ݔ଴ܣଵି߂ = (௞ݔ)ܨ + ௞ݑ଴ܮ . (2) 
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The time step ߂ > 0 can be chosen small enough such that ି߂ଵ > max൛หߣ௃̇ห, ௝ߣ∀ ∈  ଴ൟ . Thenߪ
଴ܣ)ߩ ߳ ଵି߂± ,  ଴). Rewrite equation (2) in the formܤ

௞ାଵݔܣ + ௞ݔܤ − ௞ݔܣ = (௞ݔ)ܨ + ௞ݑ଴ܮ  , (3) 

where ܣ = ଴ܣଵି߂ , ܤ =  ଴ . Neural networks [3] are proposed for solving the difference equationܤ
(3), which approximates the differential-algebraic equation (1). 

The spectrum ߪ of the characteristic pencil ܵ(ߣ) = ܣߣ + |ߣ| lies inside the unit circle ܤ < 1. 
Therefore ±1 ∈ ,ܣ)ߩ ܦ and the inverse matrices (ܤ = ܤ) − ,ଵି(ܣ ܤ) +  .ଵ existି(ܣ
Equation (3) is equivalent to the following equation, normalized to the identity matrix E 
associated with ݔ௞  and the informational matrix T = DA associated with ݔ௞ାଵ: 

௞ାଵݔܶ + ௞ݔ = (௞ݔ)ߖ + ௞ݑܮ , (4) 

where ߖ(ݔ௞) = ,(௞ݔ)ܨܦ ܮ = ଴ܮܦ . 

2. Jordan form of the informational matrix T

If the matrix T is non-invertible, the permissible initial data ݔ଴ in equation (4) cannot be 
arbitrary. They must satisfy a specific algebraic constraint linking the components of the vectors 
,଴ݔ ଴ݑ . To derive this constraint, the Jordan form ܬ of matrix ܶ is employed. A Python program 
was developed to compute an invertible matrix ܳ that transforms ܶ into its Jordan form with a 
specific ordering of Jordan blocks: 

ܬ = ܳܶܳିଵ = ቀܩ 0
0 ቁܪ , ܶ = ܳିଵ(5) .ܳܬ 

The block-diagonal matrix G consists of invertible blocks Ji of dimensions ݌௜ ×  ௜, while matrix݌
H consists of nilpotent blocks Nj of dimensions ݏ௝ ×  : ௝ݏ

ܩ = ,ଵܬ }݃ܽ݅݀ ,ଶܬ … , ,{௥ܬ ෍ ௜݌

௥

௜ୀଵ

= ݉, (6) 

ܪ = ݀݅ܽ݃൛ ଵܰ, ଶܰ, … , ௤ܰൟ, ∑ ௝ݏ
௤
௝ୀଵ = ݊ − ݉, (7) 

௜ܬ =

⎝

⎜
⎛

௜ߣ 1 0  ⋯ 0 0
0 ௜ߣ 1  ⋯ 0 0

… … … … … … … … … . . .
0 0 0  ⋯ ௜ߣ 1
0 0 0    ⋯ 0 ௜ߣ ⎠

⎟
⎞

,   ௝ܰ =

⎝

⎜
⎛

0 1 0  ⋯ 0 0
0 0 1  ⋯ 0 0
… … … … … … … … … .
0 0 0  ⋯ 0 1
0 0 0  ⋯ 0 0⎠

⎟
⎞

. (8) 

The special ordering of the blocks is such that: ݏଵ ≥ ଶݏ ≥ ⋯ ≥ ௤ݏ ≥ 1, 

|ଵߣ| ≥ |ଶߣ| ≥ ⋯ ≥ |௥ߣ| > |௜ߣ|  ,0 = |௜ାଵߣ| ⇒ ௜݌ ≥ ݅   ,௜ାଵ݌ ≤ ݎ − 1. 

3. Analysis of the normalized model

Let us introduce projection ݊ × ݊-matrices Vi with elements ݒ௞௝
௜  (݅ = 1,2, … , ݊) such that each 

matrix Vi has a single nonzero element viii = 1 on the main diagonal: 

௞௝ݒ
௜ = ൜1, ݇ = ݆ = ݅        

0, |݇ − ݅| + |݆ − ݅| ≠ 0;  ݇, ݆ = 1,2, . . . , ݊ 

The action of the matrix Vi on an n-dimensional state vector preserves the component with 
index i and nullifies all other components. 

Define the projection ݊ × ݊-matrices 
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ܲீ = ∑ ௜ܸ
௠
௜ୀଵ ,   ுܲ = ∑ ௜ܸ

௡
௜ୀ௠ାଵ . (9) 

Using Jordan form (5) equation (4) can be rewritten in the form of the following equation with 
respect to ݕ௞ =  :௞ݔܳ

௞ାଵݕܬ + ௞ݕ = (௞ݕଵିܳ)ߖܳ + ௞ݑܮܳ . (10) 

With the help of projectors (9), equation (10) splits into two equations: 

௞ାଵݕܩ
ீ + ௞ݕ

ீ = ܲீ (௞ݕଵିܳ)ߖܳ + ܲீ ௞ݑܮܳ , (11) 

௞ାଵݕܪ
ு + ௞ݕ

ு = ுܲܳߖ(ܳିଵݕ௞) + ுܲܳݑܮ௞ , (12) 

where ݕ௞
ீ = ܲீ ௞ݕ ௞ݕ   ,

ு = ுܲݕ௞ . 
Due to the invertibility of the ݉ × ݉-matrix G equation (11) is transformed into an explicit 

difference expression for the vector ݕ௞ାଵ
ீ  in terms of the full vector ݕ௞ at the previous time step 

k : 

௞ାଵݕ
ீ = ௞ݕଵିܩ−

ீ + ଵܲீିܩ (௞ݕଵିܳ)ߖܳ + ଵܲீିܩ ௞ݑܮܳ . (13) 

To analyze equation (12), we construct a self-adjoint projection ݊ × ݊-matrix ଴ܲ = ଴ܲ
∗ onto 

the kernel of the matrix ܬ∗ such that  ܬ∗
଴ܲ = 0  ~  ଴ܲܬ = 0. 

From the structure of the nilpotent blocks Nj, it follows that 

଴ܲ = ෍ ఈܸೕ

௤

௝ୀଵ

௝ߙ   , = ݉ + ଵݏ + ଶݏ + ⋯ + ௝ݏ . (14) 

Introducing the additional projection matrix ଵܲ = ுܲ − ଴ܲ , and applying the projectors P1 , P0 
to equation (12), we split (12) into two equations. It can be verified that ଵܲܪ = ,ܪ   ଵܲ ுܲ = ଵܲ,
 ଴ܲܪ = 0,  ଴ܲ ுܲ = ଴ܲ. Consequently, equation (12) is equivalent to the equations: 

ଵܲܪ ுܲݕ௞ାଵ = − ଵܲݕ௞ + ଵܲܳߖ(ܳିଵݕ௞) + ଵܲܳݑܮ௞  (15) 

0 = − ଴ܲݕ௞ + ଴ܲܳߖ(ܳିଵݕ௞) + ଴ܲܳݑܮ௞ . (16) 

For a given control ݑ௞ , the set of admissible n-dimensional vectors ݕ௞, satisfying the algebraic 
relationship (16), forms a manifold ߉௞ =  in the space ℝ௡ or in the complex space ℂ௡ if there {௞ݕ}
exist complex spectrum points ߣ௜ of the matrix T. By construction, the matrices ܲீ , ଵܲ, ଴ܲ are 
mutually orthogonal projection matrices and ܲீ + ଵܲ + ଴ܲ =  .ܧ

Let ݕ௞ ∈ ௞߉  be a known state. Is it possible, based on ݕ௞ and the controls ݑ௞ ,  ௞ାଵ to obtainݑ
the state ݕ௞ାଵ , that satisfies equation (10)? It is sufficient to find the three projections in the 
decomposition of the vector ݕ௞ାଵ: 

௞ାଵݕ = ܲீ ௞ାଵݕ + ଵܲݕ௞ାଵ + ଴ܲݕ௞ାଵ. (17) 

The first two projections are uniquely determined through the difference relations (13), (15). 
Let us represent the algebraic relation (16) for the moment k+1 as: 

଴ܲݕ௞ାଵ − ଴ܲܳߖ(ܳିଵݕ௞ାଵ) = ଴ܲܳݑܮ௞ାଵ. (18) 

In the right-hand side of equality (17), the first two terms at the moment k+1 are replaced by 
their already known representations (13), (15) through the data from the preceding moment k, 
and the obtained representation for ݕ௞ାଵ is substituted into the term with nonlinearity ߖ in (18). 
As a result, an algebraic equation is obtained for the projection ଴ܲݕ௞ାଵ . 

If the original mapping F in (1), (2), (3) is linear, then (4) ߖ is also linear, and ଴ܲݕ௞ାଵ is 
uniquely determined from the relation (18). 
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For the nonlinear mapping ߖ, restrictions depending on the type of nonlinearity must be 
imposed.  Under 'favorable' properties of the mapping ߖ the outlined procedure guarantees the 
existence and uniqueness of the desired projection ଴ܲݕ௞ାଵ , and thus the existence of a recurrent 
mapping 

௞߉ :௞ߔ × ℝ௟ × ℝ௟ → ௞ାଵݕ   ,௞ାଵ߉ = ௞ݕ)௞ߔ , ௞ݑ ,  ௞ାଵ). (19)ݑ

It follows from (19) and the relation ݕ௞ = ௞ݔܳ  that for the sequence of states 
,଴ݔ} ,ଵݔ . . . , ௞ݔ , ,௞ାଵݔ . . . } of difference equation (2) or (3) or (4) there exist the recurrent 
mappings 

௞ାଵݔ = ௞ݕ)௞ܯ , ௞ݑ , (௞ାଵݑ = ܳିଵߔ௞(ܳݔ௞ , ௞ݑ ,  ௞ାଵ). (20)ݑ

Next, we will demonstrate how the proposed approach to the study of nonlinear differential-
algebraic equations is applied to the controlled radio engineering system from Section 4. This 
approach can also be applied to other classes of radio engineering systems, for example, from 
works [4,5]. 

4. Example. Transient state equations of an electrical network

Figure 1. A two-terminal network with nonlinear resistances ݎ௝ and conductances ݃௝ , ݆ = 1,2. 

The electrical network in Fig. 1 represents a two-terminal network with a given input voltage 
௝ܥ on the pair of input terminals, two capacitances (ݐ)ܷ , two nonlinear conductances ݃௝ , 
inductances 2ܮ ,1ܮ, mutual inductance 12ܮ, and two nonlinear resistances ݎ௝ , ݆ = 1,2. 

The currents, voltages, and element parameters of the network satisfy the relationships: 

஼ೕܫ = ௝ܥ
ܷ݀஼ೕ

ݐ݀
, ௚ೕܫ  = ݃௝(ܷ஼ೕ); ௥ܷೕ = ௥ೕܫ)௝ݎ )

ଵܷ = ଵܮ
ଵܫ݀

ݐ݀
+ ଵଶܮ

ଶܫ݀

ݐ݀
௝ܮ ; > ଵଶܮ ,0 > 0 

ܷଶ = ଵଶܮ
ଵܫ݀

ݐ݀
+ ଶܮ

ଶܫ݀

ݐ݀
ଵଶܮ ;

ଶ = ;ଶܮଵܮ ଵܮ  ≠ ଶܮ ⎭
⎪
⎬

⎪
⎫

(21) 

The currents through the inductances and the voltages across the capacitors are chosen as the 
dynamic state variables of the network. For the network in Fig. 1 the state vector (ݐ)ݔ is four-
dimensional: 
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(ݐ)ݔ = ൫ܫଵ(ݐ), ,(ݐ)ଶܫ ܷ஼భ(ݐ), ܷ஼మ(ݐ)൯ ௧௥
(22) 

while the total number of currents and voltages across all nine branches of the circuit equals 18. 
In general, the complete system of Kirchhoff's equations can be written, for instance, using the 
fundamental cycle and cut-set matrices of the network graph. For the model network, this results 
in nine Kirchhoff equations. By eliminating the external current ܫ, the currents ܫ௥ೕ , and the 
voltages ௚ܷೕ, the following four conservation law equations are obtained (݆ = 1,2): 

௝ܷ − ܷ஼ೕ = − ௥ܷೕ , ܷ஼భ − ܷ஼మ = ஼భܫ ,(ݐ)ܷ + ஼మܫ + ଵܫ + ଶܫ = ௚భܫ− − ௚మܫ . (23) 

Substituting the expressions for ௝ܷ , ஼ೕܫ , ௥ܷೕ ,  ௚ೕ from (21), we obtain the desired system ofܫ
differential-algebraic equations with respect to the dynamic variables (22): 

ଵܮ
ଵܫ݀

ݐ݀
+ ଵଶܮ

ଶܫ݀

ݐ݀
− ܷ஼భ =  ଵܫ(ଵܫ)ଵݎ−

ଵଶܮ
ଵܫ݀

ݐ݀
+ ଶܮ

ଶܫ݀

ݐ݀
− ܷ஼మ =  ଶܫ(ଶܫ)ଶݎ−

ܷ஼భ − ܷ஼మ =   (ݐ)ܷ

ଵܥ
ܷ݀஼భ

ݐ݀
+ ଶܥ

ܷ݀஼మ

ݐ݀
+ ଵܫ + ଶܫ = − ଵ݃(ܷ஼భ)ܷ஼భ − ݃ଶ(ܷ஼మ)ܷ஼మ⎭

⎪⎪
⎬

⎪⎪
⎫

(24) 

The system of differential-algebraic equations (24) takes the vector form (1) with respect to 
the state vector (22) (ݐ)ݔ, where: 

଴ܣ = ൦

ଵܮ ଵଶܮ 0 0
ଵଶܮ ଶܮ 0 0
0 0 0 0
0 0 ଵܥ ଶܥ

൪ , ଴ܤ = ൦

0 0 −1 0
0 0 0 −1
0 0 1 −1
1 1 0 0

൪, (ݔ)ܨ = ൦

ଵݔ(ଵݔ)ଵݎ−
ଶݔ(ଶݔ)ଶݎ−

0
− ଵ݃(ݔଷ)ݔଷ − ݃ଶ(ݔସ)ݔସ

൪ , ݑ଴ܮ = ൦

0
0

(ݐ)ܷ
0

൪. 

Both matrices ܣ଴ , ݐ݁݀ :଴ are singularܤ ଴ܣ = ݐ݁݀ ,0 ଴ܤ = 0. At the same time ܣ݃݊ܽݎ଴ = 2 due 
to the parameter relationships in (21). The characteristic polynomial in this case is 

(ߣ)଴݌ = )ݐ݁݀ ଴ܣߣ + (଴ܤ = ܽ ⋅ ,ߣ  ܽ = ൫ඥܮଵ − ඥܮଶ൯
ଶ

. (25) 

Thus, under the condition ܮଵ ≠ ଴ܣߣ ଶ the pencilܮ +  ଴ is regular with a single eigenvalue ofܤ
0, and for any ߣ ≠ 0 the inverse matrix (ܣߣ଴ +  .଴)ିଵ existsܤ

To illustrate, let us assign numerical values to the parameters of the circuit's inertial 
elements—inductances and capacitances: 

ଵܮ = 4, ଵଶܮ = 2, ଶܮ = 1, ଵܥ = 1, ଶܥ = 2. 

The matrix ܵ = ଴ܤ − ଴ is invertible, with the inverse ܵିଵܣ = Since ±1 .ܦ ∈  it is ,(଴ܤ଴ܣ)ߩ
convenient to choose a time step ∆= 1 when discretizing equation (1). Thus, the difference model 
of type (2) for equation (1) immediately takes the form (3), where ܣ = ,଴ܣ ܤ = ଴ܤ . The matrices 
ܦ = ܵିଵ, ܶ in the normalized form (4) of equation (1) are expressed as follows: 

ܦ = ൦

−4 7 −5 −1
7 −13 9 2
1 −2 2 0
1 −2 1 0

൪ , ܶ = ൦

−2 −1 −1 −2
2 1 2 4
0 0 0 0
0 0 0 0

൪. 

Calculations using our Python program yielded the following results for transforming the 
matrix  ܶ into its Jordan form ܬ = ܳܶܳିଵ: 
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ܬ = ൦

−1 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0

 ൪ ,  ܳ = ൦

−2 −1 0 0
1 1 0 0
0 0  1  2
0 0 0 1

൪ ,  ܳିଵ = ൦

−1 −1 0 0
1 2 0 0
0 0 1 −2
0 0 0 1

൪. 

The specific order of Jordan block arrangement in (6), (7) is preserved: 

ܩ = ଵܬ = −1, ଵܰ = ቂ0 1
0 0ቃ , ଵݏ = 2, ଶܰ = 0, ଶݏ = 1. 

Thanks to this, the required projectors take the form of the following diagonal matrices: 

ܲீ = ௃ܲభ = ݀݅ܽ݃{1 0 0 0}, ுܲ = ݀݅ܽ݃{0 1 1 1}, ଴ܲ = ݀݅ܽ݃{0 0 1 1}, ଵܲ = ݀݅ܽ݃{0 1 0 0}. 

Conclusion 

The traditional approach to studying the descriptor system described by a linear or semi-linear 
differential-algebraic equation depends on the specific fixed index of the characteristic matrix 
pencil of the linear part of the equation (1). A key feature and versatility of our method is its 
independence from this specified index. It is also worth noting the potential use of the method 
in problems of conflict control and pursuit games. 
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