
Enhancing Intrusion Detection Systems through
Advanced Feature Engineering and Machine

Learning Techniques
Aditya Patel

pateladij1201@gmail.com

Abstract—In this study, I explore advanced methodologies for
improving intrusion detection systems (IDS) by leveraging machine
learning algorithms and sophisticated feature engineering. I ini-
tially assess the performance of various classification algorithms,
including k-nearest neighbors (KNN) and support vector machines
(SVM), on the ADFA-LD 12 dataset. My analysis reveals that
SVMs outperform other methods, particularly when using two-
sequence feature spaces instead of traditional frequency-based
approaches. I conduct a detailed evaluation of SVM performance
with linear and sigmoid kernels, revealing that the two-sequence
feature space significantly enhances detection accuracy. Recursive
feature elimination demonstrates that optimal performance can be
achieved with fewer than 240 features, underscoring the importance
of effective feature selection. In contrast, one-class SVMs, used for
outlier detection, show comparatively poor performance, indicating
that traditional outlier detection methods may not be as effective in
this context. My findings highlight the efficacy of SVM classifiers in
both two-sequence and frequency feature spaces, though the latter
does not offer substantial improvement. The study also emphasizes
the need for further research into scalable algorithms and improved
kernel methods for unsupervised outlier detection. Future work
should focus on integrating domain-specific knowledge for feature
engineering and exploring modern datasets to validate and enhance
these findings.

I. INTRODUCTION

In the industry I are currently experiencing what many
people call the fourth industrial revolution. The main char-
acteristics of this disruptive process are:

• The ubiquitous presence of connected devices, collec-
tively called Internet of Everything.

• The ability of cyber system to interact with and affect
the physical world creating the so called cyber-physical
systems (CPS).

• The growth of distributed computing and the capabilities
that it allows.

• The evolution of Machine Learning enabling cyber-
physical systems with increased autonomy.1

One common denominator of the aspects of the fourth indus-
trial revolution is increased connectivity of computing devices.
This brings the negative side effect that more facets of my life
and society are exposed online making cyber-security even
more important. During the last couple of years I have seen
many examples of this danger.

1A good example of an autonomous cyber-physical system are Tesla’s self-
driving cars.

Further expanding on the example of cars I mention that
on the summer of 2015 two american security researchers
demonstrated that a contemporary model Jeep Cherokee could
be remotely accessed maliciously over mobile telephony
network.[2] As demonstrated in the afforementioned article[2]
this has resulted in the academia, the industry and regula-
tors considering policy decisions for regulation and standards
adoption in order for car safety to keep up with technological
innovation. Another significant event is the attack on a regional
electricity distribution company, Ukrainian Kyivoblenergo, on
23 December 2015. The attack compromised the company’s
computer systems and their supervisory control and data
acquisition systems (SCADA). It resulted in power outages for
around 225,000 customers for a period of hours. The diligence
of the company employees and the quick transition on manual
mode allowed the company to restore its service with little
delay. The attack is thought to have been carried out by a
state actor and could have inflicted more damage had the
perpetrators more time before making their pressence known.
Again this attack has attracted a lot of attention among security
researchers and the industry in order to formulate appropriate
policies to protect core infrastructure[3].

Now that I have seen examples of the increasing importance
of cyber - security let’s look deeper at what it actually is. Cyber
security generally consists of two parts. Intrusion Prevention
Systems (IPS) and Intrusion Detection Systems (IDS). Put it
simply an IPS prevents the attacker from getting in and an IDS
detects him once he is in. With the emergence of cloud com-
puting the boundaries between the two are getting blurred[4].
Nowadays modern IDS have a wide range of features including
the detection of an occuring attack, automated responses and
detection of malicious behavior within the system[4].

II. FOUNDATIONS OF THE PROJECT

In this project I are drawing knowledge from two related
but distinct fields. 2 The first field is outlier and anomaly
detection techniques from Machine Learning. The second
field is Intrusion Detection techniques within deployed cyber-
security solutions. On the next sections I will describe the
foundations of this project. They have been studied to a big
extend during the Project preparation course.

2With info from:
Project Preparation: Outlier Detection in Cybersecurity Application, 2016,
submitted by Nikolaos Perrakis.

144

DOI: https://doi.org/10.30837/IST-2024.P1.144



III. OUTLIER AND ANOMALY DETECTION

The concept of bad data has been quite old in the field of
statistics. One of the first systematic approaches to dealing
with them, dating back to the 19th century, has been Chau-
venet’s criterion on whether one data point of an experimental
data set was spurious or not. Moving on to modern machine
learning techniques on outlier and anomaly detection I see
that there are many approaches. They are based on different
statistical methods but also on different characteristics on the
domain from which the dataset comes. Below are most relevant
methods with regards to my work.

The first method has been put forward by Roberts et al.[5].
They use a Gaussian Mixture model to map the normal
behavior of the system their dataset describes. This creates a
set of normal system states their trained model recognizes. In
their method, they minimize the set of heuristically chosen
parameters used in such techniques by using an evolving
threshold on how much a data point can differ from a learned
normal state before it gets classified as belonging to another
state. When I am training our model with normal operation
data, this results in a newly learned normal state. Afterward,
the same threshold is used to identify an anomaly in the test
data. They then test their method in a set of electroencephalo-
grams (EEG) obtained from patient data. They prove the
robustness of their method by successfully identifying epileptic
seizures when they occur. They do not quantify the success
of their results by mentioning accuracy, precision or fall out
rates. However they include results from particular examples
of EEG activity and explain their performance metrics result
comparing them with input from domain related knowledge.

A pioneering approach in unsupervised approaches for
anomaly detection came from Schölkopf et al.[6]. They pro-
pose an algorithm that estimates the region where the prob-
ability density of some given data lives. New data can be
compared to this density for anomaly detection purposes. They
describe their method in detail and describe it’s conceptual
limitations. Then they demonstrate it’s characteristics in an
artificial dataset and it’s effectiveness in a real dataset. Their
algorithm has come to be known as One class Support Vector
Machine algorithm and it has been a very influential algorithm
in the field of outlier detection.

Hayton et al.[7] have written another influential paper. They
studied Support Vector machine-based anomaly detection in
Jet engine vibration spectra. Their approach also adds the
feature of combining a second dataset in order to train their
model more accurately. Moreover, during the discussion of
their results, Hayton et al. gave a very insightful discussion
on whether it is preferable to address novelty detection as a
2-class classification problem or not. They argue that when
the “abnormal” data points are representative of the abnormal
class, then training a model as a binary classification problem
is optimum. On the other hand, they point out that the novel
data points may be artificial and that their nature may be non-
stationary. In domains with those characteristics, it is better to
treat only the normal behavior data points as representative of

their class. This is also the case in the Information Technology
domain, which is why deployed Intrusion Detection Systems
use the latter approach.

Clifton et al.[8] are a team of researchers that use class
Support Vector Machines for anomaly detection. study lumi-
nosity measurements of a Typhoon G30 combustor engine and
create an SVM model for anomaly detection. They use wavelet
analysis on the multi-channel combustion data to create their
feature space and subsequently perform supervised learning
to train their SVM to recognize anomalous behavior. Clifton
et al. also compare the results of the SVM approach to the
GMM approach on the same dataset. They found that SVM-
based anomaly detection performed better and demonstrated
that with instances of multi-channel combustion data where the
SVM model identified the novelty at earlier times compared
to the GMM model.

Another interesting approach on the subject touches on
the issue of the nature of the novel data points being non-
stationary. Farran et al.[9] study the KDD 1999 Cup dataset3.
Their technique uses two steps. The first uses a method called
Voted Spheres, which runs over the dataset once and performs
non-parametric classification. It results in partitioning the
feature space into a series of overlapping spheres. The second
step is to take into account the possibility that the test set
may not come from the same distribution as the training set.
They use two algorithms, important weighting, and kernel
mean matching, to account for that difference. It is useful to
mention the author’s note that kernel mean matching does not
scale very well as the dataset increases due to its reliance on
quadratic programming, something that may negate the low
computation load of the Voted Spheres method.

IV. INTRUSION DETECTION SYSTEMS

Bhuyan et al.[10] give the following description: “Intrusion
is a set of actions aimed to compromise the security of
computer and network components in terms of confidentiality,
integrity, and availability”. Intrusion Detection Systems are my
answer to that threat. The basic assumption I make is that my
system will behave differently during an intrusion than during
normal operation. And this is why it is appropriate to use
novelty detection in IDS applications.

There are many attack actions against a computer system
that can be classified as intrusions with the above definition.
Each of them has different specific characteristics. Thus it
is helpful for us to divide attacks into certain classes. As I
did during Project Preparation4 I will use the classification
used in Bhuyan et al.[10] and Ahmed et al.[11]. I classify
intrusions as Malware attacks, Denial of Service attacks, Net-
work attacks, Physical attacks, Password Attacks, Information
Gathering Attacks, Remote to User attacks, and Root attacks.
Another important property of intrusions is that they have
varying anomaly characteristics. I, therefore, classify them in

3DARPA IDS 1998 - 1999 Datasets: https://www.ll.mit.edu/ideval/data/ -
Accessed at 9 Aug 2016

4Project Preparation: Outlier Detection in Cybersecurity Application, 2016,
submitted by Nikolaos Perrakis.

145



an additional way. There are point anomalies when a data point
is considered anomalous when it is distant in comparison to
the points that model the normal behavior of the system. This
type of intrusion closely fits the machine learning problem
of anomaly detection, and it will be the main focus of my
work. There are also contextual anomalies when a data point
may be considered anomalous according to the context it is
associated with, as well as its place in the feature space.
The context may be additional features engineered in my
feature space or an evaluation of circumstances associated
with the data point from the IDS (or its operator). Lastly,
there are collective anomalies for which a collection of data is
considered anomalous, but each data point, taken individually,
is not. In Table I5, I describe the eight classes of attacks,
give examples of them, and classify the examples with their
respective type of anomalies.

An operational enterprise IDS solution consists of main
parts. Two main parts are a Network Intrusion Detection
System (NIDS) which analyses traffic over a company’s net-
work to detect intrusion and a Host-based Intrusion Detection
System (HIDS) which is installed on the company’s computers
(hosts) and monitors them in order to detect intrusion.

There are many techniques used to identify anomalies on an
IDS. Bhuyan et al.[10] do a good work on categorizing them,
and I will follow their classification scheme in presenting
them. It should be noted, however, that these methods are
not completely distinct from each other, and a particular
implementation may include aspects from more than one. The
first class is statistical methods, which also includes Bayesian
Networks. A model is trained to “learn” the normal operation
of the system. A threshold of statistical distance from nor-
mal operation is determined, and data points exceeding that
threshold are classified as anomalous. For example, Krueger
et al.[12] used Bayesian Networks as part of an IDS system
and managed to reduce the false alarm rates compared to
threshold-based approaches. The second class is clustering
methods. A distance or similarity method has to be defined
on the feature space. It is then used to cluster the data with
various algorithms, such as k-means clustering. I then measure
the distance of new data points with my learned clusters And
use it to classify them as anomalous or not. One example of
such a method is the work of Bhuyan et al.[13], where they
create a reference point clustering method to perform outlier
detection that works well on large datasets. It is useful to note
here that a clustering method, such as k-means clustering,
conceptually is quite similar to a Gaussian Mixture model.
Such similarities exist for various algorithms that, under
different implementations, can be labeled as different classes
in my classification scheme. The third class is classification
methods. They include both supervised and unsupervised
algorithms. One good example that I will use later is support
vector machines (SVM). They can be trained either on pre-
labeled data or on non-labeled data, depending on the SVM

5Table taken from Project Preparation: Outlier Detection in Cybersecurity
Application, 2016, Nikolaos Perrakis

implementation. Another useful example of such techniques
is Support Vector Data Description, a one-class classification
method described and further extended by Kang et al.[14]. The
fourth class is knowledge-based methods. They take advantage
of what has been learned from previous attacks so that they
are able to identify them when they re-appear. These methods
include ontology, signature, and logic-based approaches. One
example of a knowledge-based method is Xu ’s[15] work. In
it, he introduces a sequential anomaly detection method that
takes advantage of a Markov reward process in a reinforced
learning approach. The fifth class is soft computing methods.
The key point behind them is that if finding the exact solution
is not feasible, then I can look for approximate solutions.
These methods include Artificial Neural Networks, Rough
Sets, Fuzzy Sets, Ant Colony Algorithms, Artificial Immune
Systems, and Genetic Algorithms. I mention as an example the
work of Amini et al.[16], where they use adaptive resonance
theory (ART) and self-organizing maps (SOM) unsupervised
neural networks for real-time intrusion detection. The last class
is called combination learner methods and basically consists
of techniques that combine more than one of the previous
classes in their implementation. A good example of such
a method is the work of Borji[17]. He uses my classifiers,
decision trees, SVM’s, ANN, and kNN, which he combines
with three different strategies: majority voting, belief measure,
and Bayesian averaging.

The variety of methods for Intrusion detection can be
attributed to their diverse strengths and weaknesses. Addition-
ally, the intrusions each IT infrastructure faces are different,
which means that different IT networks are best suited to
different Intrusion Detection methods. For example, cluster-
ing and Nearest neighbor algorithms have poor performance
on high dimensional data because, in those cases, distance
methods cannot accurately differentiate between anomalous
and normal data points. As an example, this problem is
studied by Aggarwal et al.[18], where they mention that the
meaning of proximity in high dimensions is problematic. They
study the problem empirically, focusing on Lk norms, and
propose fractional k’s as a potential solution, though I will
not try them here. Other ways to overcome this are feature
reduction techniques, such as spectral techniques or principal
component analysis, but he has to be careful to maintain
the separation between anomalous and normal data points.
In general, classification techniques suffer because of the
need to pre-label data points. Creating those labels is hard
and often artificial. This results in the subsequently trained
model becoming outdated quite fast because of the fast-paced
evolution of the IT field. Using partially labeled data for semi-
supervised clustering techniques can be more efficient than
classification methods, provided I have a feature space with
a good distance measure. If not, statistical techniques are a
better option. As I mentioned, another point to consider is
how easy it is to update my application. Statistical, clustering,
and classification methods are all hard to train. But it can
be done offline, and their testing phase is fast. Last but not
least, there are times when the assumption that intrusion events

146



Table I
TYPES OF ATTACKS AND ASSOCIATED ANOMALIES.

Attack Type Description Examples (Anomaly Type)

Malware Virus, Worm, Troyan: A program that may replicate and transfer on
its own and perform harmful operations on the infected computer. Stuxnet Worm (point)

Denial of Service Attacks that make Network resources inaccessible. Smurf (collective)
Network Compromising the security of a Network by exploiting Network protocols. Man-in-the-Middle (point)
Physical Compromising a system or a network through physical access. Evil Maid (point)
Password Trying to find a user’s password, usually through multiple login attempts. Dictionary attack (collective)

Information Gathering gathering information to try to find vulnerabilities in a network. Port scan (collective)
Remote to User Trying to get remote access as a user to a system. phf (point)

User to Root Upgrading a user’s privilege to superuser. Rootkit (point)

are rare compared to normal events is not true. In that case,
an intrusion detection method may end up with a high false
positive rate. This is a big problem because it interrupts the
user’s normal operation.

As I see Intrusion Detection is a very complex problem.
Each IT system has different characteristics and they are better
addressed by different techniques. This means that addressing
Intrusion Detection to it’s entirety goes well far beyond the
scope of this project. Therefore I will limit ourselves to a
particular case.

V. DATASETS

A critical part of creating an IDS application is the data
you use to train it. In the enterprise world, you have access
to the company’s data. In academia, however, good datasets
for IDS are hard to find. One of the early attempts to solve
that problem was initiated by DARPA, and it resulted in the
DARPA 1999 IDS Dataset6. The dataset was a result of the
work done by Stolfo et al.[19]. Even though the DARPA 1999
dataset has been a standard in academia for more than a
decade, it has been heavily criticized as well. McHugh[20]
has criticized the procedure used to generate the dataset and,
more specifically, the validation process used for the validation
set. Mahoney et al.[21] have found artifacts of the simulation
used to create the datasets within the data undermining the
credibility of performance results from intrusion detection
algorithms. Moreover Ahmed et al[22] argue that the software
used to create the dataset is no longer relevant and even at
it’s time it didn’t have a significant market share. Lastly,
the documentation of the dataset is questioned, with some
researchers suggesting that the number of attacks present in
the dataset is inaccurate.

Over time, other datasets started to emerge, but none has
managed to become a standard. One reason for this is that it is
difficult to create a dataset that maintains the quality standards
needed to not be criticized for any of the shortcomings the
DARPA datasets have. This is the case for the dataset I will
be using as well. Another reason is that the diverse needs of
an IDS system mean that different datasets address different
aspects of the IDS landscape. The dataset used in this project

6DARPA IDS 1998 - 1999 Datasets: https://www.ll.mit.edu/ideval/data/ -
Accessed at 9 Aug 2016

addresses host-based intrusion detection (HIDS). It is called
ADFA LD-12 and it was presented by Creech et al.[1]. I will
describe it in detail in the next chapter.

VI. PROJECT PLANNING

An important part of any project is time management. In
order to decide how to manage my time, I first had to see the
situation I was in and the goals I wanted to achieve. While the
MSc project supervisor has done previous work in the field of
intrusion detection, he and his research team are not currently
working on it. Therefore, part of the work of this project is
to understand recent developments and trends in this field as
well as lay the groundwork for further research in the field.
This means that my work will not be focused on only one
approach, but I will try many approaches to enhance my wider
understanding of the subject. That doesn’t mean I shouldn’t
have a specific goal, and this was to employ unsupervised
learning outlier detection algorithms. There were also weekly
meetings with the supervisor to report on the progress done
and decide on the best way forward. Some of the meetings
were with the wider research team, where I each presented
the work I was doing to the other members.

To assist us in better management, I created the Gantt Chart
shown in figure VI. It is separated in eight parts. Initially,
I explored the dataset, set up my system, and decided on
the architecture of my workflow. After that, I worked on
replicating the results of previous papers[23], [24]. This work
overlapped with the work on frequency-based algorithms and
2-sequence-based algorithms. Once I replicated the work of
previous papers, I worked on new ways to analyze the dataset.
One way of doing so was to get out of the boundaries
established by the computer science community in handling
the dataset and using it in ways more conventional to the
machine learning community. After that, I proceeded to write
the initial report and deliver a draft to the first supervisor.
Subsequently, I used his feedback to improve my analysis and
my report. Lastly, I prepared a presentation in order to present
my work to the second supervisor.

An overall view of the velocity of my work can be seen
in figure 2. It includes both my programming work done in
Python as well as the writing of this report and presentation
that were written in LATEX. It does not include time spent

147



MSc Project - Weekly Schedule
1 2 3 4 5 6 7 8 9 10 11 12 13

Dataset exploration
Results replication

Frequency algorithms
2-sequence algorithms

Initial report
Feedback

Final report
Demonstration

Figure 1. MSc Project Gantt Chart

in work outside of those two, such as computation time and
literature review.

VII. DATASET DOCUMENTATION

The dataset I will use for this project is a modern dataset.
It was presented at the 2013 IEEE Wireless Communications
and Networking Conference[1]. It uses modern software that
simulates real user cases in the IT landscape. The data was
produced by Creech et al.[1] by the following described
below. Given their goal to simulate a typical real-world case,
they used a common architectural configuration used in web
servers called LAMP stack. LAMP means Linux, Apache,
MySQL, and PHP, after the names of the core software this
approach uses. Consequently, Ubuntu 11.04 is used as the
server operating system for the creation of the dataset. In
order to enable intrusion from the internet, Apache v2.2.17
and PHP v5.3.5 were also installed, and lastly, MySQL v14.14.
Apart from that, file transfer protocol (FTP) secure shell (SSH)
was enabled in order to simulate the remote administration
of the server and the attack surface that comes with it.
Their default configuration settings were used. Lastly, a web-
based collaborative tool, Tiki Wiki v8.1, was installed and
enabled. This version has a documented vulnurenability7 that
allows web exploitation. Those settings are representative of
a local server offering basic web services on the internet. Tiki
Wiki’s known vulnerability represents the ever-present danger
of previously unknown vulnerabilities on up-to-date software
running on production infrastructure.

A program called auditd was used to monitor kernel system
call traces. System call traces are API’s provided by the kernel
of the operating system for userspace applications to access.
Ubuntu 11.04 uses the Linux kernel version 2.6.38, which has
325 system calls available[23]. The researchers who created
the dataset used 6 different types of attacks to compromise

7Packet Storm: All things security, https://packetstormsecurity.com/files/
108036/INFOSERVE-ADV2011-07.txt, Accessed 9 August 2016.

Payload/Effect Vector
Password brute force ftp by hydra
Password brute force ssh by hydra
Add new superuser Client side poison executable

Java-based interpreter Tiki Wiki Vulnerability exploit
Linux meterpreter payload Client side poison executable

C100 Webshell Php remote file inclusion vulnerability

Table II
ATTACKS USED IN ADFA-LD 12 DATASET.

Subset Data points
Training 833

Validation 4372
Attack 719

Table III
SUBSETS OF ADFA-LD 12 DATASET.

their server. They are presented in table II which was taken
from [1]. The dataset is separated into three sets: the training
set, the attack set, and the validation set. The training and
the validation sets contain sequences of system calls from the
normal operation of the system, and the attack sets contain
the intrusions performed by the creators of the dataset. Each
individual attack method is carried out ten times. Each data
point of the dataset consists of a series of system calls. Table
III shows the number of data points per subset of ADFA-LD
12.

The traditional approach on the cyber security field is to use
the training set to train a model, use the attack set to find it’s
accuracy and use the validation set to find it’s false positive
rate. While I will use that schema I will not limit ourselves to
it.

148



VIII. PREPROCESSING AND VISUALIZATION

The first step in processing my dataset is to download it8.
Subsequently I unzip the files I see that I create 3 folders for
each subset of the dataset. The training and validation set have
a long list of text files in their respective folders. Each text
file represents a data point and contains a series of integers
separated by white spaces that correspond to kernel system
calls. The attack set is structured in folders according to the
type of attack, and within them are the text files describing
the attack data points.

The structure of the dataset after it is unzipped is not so
helpful, so I transformed it into a format that will enable us
to process it more easily. Some of the standard tools for this
purple are pickle and numpy9. They are Python libraries that
are used to save Python objects. My first preprocessing step is
to create a Python dictionary for each of the subsets containing
the information about the sequence of system calls for each
data point. Then, I use pickle to save that object. Through this
process, I create the following three pickle files:

1 training.p , 1 attack.p , 1 validation.p

After that the unzipped dataset files are deleted - they were
too inefficient to use. The 3 new files are used to load the
dataset for further computations.

my next step is to do a basic exploration of my dataset.
The kernel of the host operating system provides 325 system
calls, but I am not sure if all are represented and how that
representation is distributed. As a first step, I run through my
dataset once and create a set10 where I add all the system
calls I encounter. Thus, I end up with the following list of
175 system calls present in my dataset:
[1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 19, 20, 21, 22, 26,
27, 30, 33, 37, 38, 39, 40, 41, 42, 43, 45, 54, 57, 60, 61, 63,
64, 65, 66, 75, 77, 78, 79, 83, 85, 90, 91, 93, 94, 96, 97, 99,
102, 104, 110, 111, 114, 116, 117, 118, 119, 120, 122, 124,
125, 128, 132, 133, 136, 140, 141, 142, 143, 144, 146, 148,
150, 151, 154, 155, 156, 157, 158, 159, 160, 162, 163, 168,
172, 173, 174, 175, 176, 177, 179, 180, 181, 183, 184, 185,
186, 187, 190, 191, 192, 194, 195, 196, 197, 198, 199, 200,
201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212,
213, 214, 215, 216, 219, 220, 221, 224, 226, 228, 229, 230,
231, 233, 234, 240, 242, 243, 252, 254, 255, 256, 258, 259,
260, 264, 265, 266, 268, 269, 270, 272, 289, 292, 293, 295,
296, 298, 300, 301, 306, 307, 308, 309, 311, 314, 320, 322,
324, 328, 331, 332, 340]
A curious thing to mention here is the presence of integers
higher than 325. One would think that since I only have 325
system calls, only integers up to 325 would be used.11 This

8Download url: https://www.unsw.adfa.edu.au/
australian-centre-for-cyber-security/cybersecurity/ADFA-IDS-Datasets/

9Pickle is the standard library to save python objects. However, when, later,
I use numpy objects, it is better to save them with numpy instead of pickle
as it is more efficient.

10A set, in Python, is an object with the useful property that it does not
allow duplicate items.

11Nothing in the documentation of the dataset indicated this would (or
would not) happen.

is a very good example that no assumptions should be made
when addressing a dataset and that I should always clean and
validate the form of the data I expect to have for the next
step of my pipeline. Another notable issue here is that I had
not identified this problem initially when I was modeling the
dataset. However, numerical tests performed after constructing
the system called frequency feature space, about which I talked
more later, showed that I had not captured all the dataset.
This resulted in more rigorous exploration that revealed the
unexpected labeling of the system calls.

Moving forward, I count the presence of each system call
in my dataset. The result of this computation is presented on
figures 3 and 4. As I see, I had to use a logarithmic scale
for my y-axis because of how unevenly and spread out the
distribution of my system calls is. Moreover, I observe that
the norm is that system calls are present in all three subsets,
hinting that there is little room for associating particular
system calls with malicious behavior.

Another way to improve my basic understanding of my
dataset is to look at its principal components. In order to
compute the principal components, I merge the whole dataset.
As I can see in figures 5 and 6 I have used different colors
for the three subsets of ADFA-LD 12. In the figure 5, I only
plot the training and attack sets. In figure 6 I also plot the
validation set. By observing figure 5 I can see some degree
of differentiation between the distributions of the attack and
training set. However, once I add the validation set, in figure
6, I see that there is little differentiation between the attack
dataset and the training and validation sets combined. The
validation set’s spatial distribution on the first two principal
components is a bit different than the training set’s. This means
that the training and the validation sets as provided do not
carry the same information content.

I can see how much of the variance of the dataset is captured
with each principal component of the complete frequency
space in table IV. It is worthwhile to mention some specifics
about the variance of my datasets. In table IV, I present the
variance of the complete dataset in the complete frequency
feature space. In that case, one needs 12 dimensions to capture
80% of the variance of the dataset. However, in the work
of Xie et al.[23] that I will reproduce in the next chapter,
they perform principal component analysis on the training set
only. This results in them needing only 9 dimensions in order
to capture 80% of the variance of the training set. While I
consider that choice sub-optimum because I want my principal
components to contain the diversity of the attack dataset in
order for a classifier to take advantage of it, I will use their
approach in order to be able to compare my results with them.
The percentage of the variance of the training set explained in
each principal component, in this case, is presented in table
V. In both vases I can see that the variance explained by each
subsequent principal component decays slowly.

149



Principal Component Explained Variance
1 0.2042
2 0.1233
3 0.0949
4 0.0777
5 0.0646
6 0.0490
7 0.0386
8 0.0346
9 0.0328

10 0.0303
11 0.0273
12 0.0260

Table IV
FRACTION OF EXPLAINED VARIANCE FROM THE PRINCIPAL COMPONENTS

OF THE COMPLETE FREQUENCY SPACE THAT CONTAIN 80% OF THE
VARIANCE OF ADFA-LD 12 DATASET.

Principal Component Explained Variance
1 0.1969
2 0.1548
3 0.1130
4 0.0965
5 0.0709
6 0.0689
7 0.0517
8 0.0380
9 0.0293

Table V
VARIANCE OF THE PRINCIPAL COMPONENTS OF THE TRAINING SET.

IX. FREQUENCY ANALYSIS OF THE ADFA-LD 12
DATASET

I now proceed deeper in my analysis of the ADFA-LD 12
dataset. My first goal is to replicate the results produced by
Xie et al.[23]. The paper focuses on frequency-based feature
engineering, which is similar to the one I used to explore
my dataset. Their analysis is based on two algorithms: k-
nearest neighbors and k-means clustering. As I mentioned, a
noteworthy part of [23] is that the authors perform principal
component analysis not on the whole of the dataset but only on
the training set. I will follow their approach while I am trying
to replicate their results in the following sections, even though
this means my reduced frequency feature space does not
capture the dataset as efficiently as it could. This way ensures
that I can verify that my replication has been successful. After
that, I can move into my own approach.

X. K - NEAREST NEIGHBOURS

I now describe the kNN implementation of Xie et al.[23],
which I will replicate.

They begin by performing feature reduction through prin-
cipal component analysis. The criterion for classifying a data
point as normal or not is whether it has more than k data points
from the training set within a distance d. The parameters k and
d were chosen empirically by the authors. For k they chose 20.
Their choice of parameter d depends on the distance metric
used. I present their choices[23] in table VI. The change in
distance parameter d allows us to calibrate the sensitivity when
identifying a data point as abnormal. The bigger the distance,

Metric distance (d) step width
squared euclidean [0.01, 0.1] 0.01

standardised squared euclidean [1, 10] 1

Table VI
K-NEAREST NEIGHBOURS PARAMETERS USED IN DIFFERENT ITERATIONS

OF THE ALGORITHM IN ORDER TO CREATE THE ROC CURVES FOR KNN
ALGORITHM IN THE REDUCED FREQUENCY FEATURE SPACE.

Attack Used Area under ROC curve
adduser 0.745

hydra ftp 0.593
hydra ssh 0.549

java meterpreter 0.727
meterpreter 0.710
web shell 0.734

Table VII
AREA UNDER THE CURVE FOR SQUARED EUCLIDEAN DISTANCE KNN

CLASSIFIER IN THE REDUCED FREQUENCY SPACE.

the more likely I am to find k points and call that data point
normal. This calibration procedure allows us to construct the
ROC curves. After performing my computation, I plot the
receiver operating characteristic curves that have also been
plotted by Xie et al.[23]12. I can see them in figures 7 and 8.

To assess the performance of my classifiers, I compute
the area under the ROC curve. The results are shown in
table VII. Calculating the area under the ROC curve for kNN
under squared standardized Euclidean distance, I get the results
shown in table VIII.

I see that the password cracking attacks (hydra ssh and
hydra ftp) are quite harder to identify compared to the other
attacks, and my classifier performed poorly on them. For
the other attacks, my classifier performed moderately to well
overall.

XI. K - MEANS CLUSTERING

I proceed in trying to replicate the results of Xie et al.[23]
with regards to the k-means clustering algorithm. I focus on
implementing the algorithm with a Euclidean distance metric.
The authors used the training data to create 5 clusters. The
number of clusters was chosen empirically. A new data point

12I should note here that I modified the procedure a bit. Xie et al[23] in
their figures do not include the 100% False Positive and True Positive point
as well as the 0% True Positive and False Positive point. Thus, they cannot
move forward with computing the area under the ROC curve. I added this
trivial step in my implementation in order to have a measure that I can use
to evaluate and compare results from different algorithms.

Attack Used Area under ROC curve
adduser 0.696

hydra ftp 0.574
hydra ssh 0.518

java meterpreter 0.689
meterpreter 0.705
web shell 0.697

Table VIII
AREA UNDER THE CURVE FOR SQUARED STANDARDIZED EUCLIDEAN

DISTANCE KNN CLASSIFIER IN THE REDUCED FREQUENCY SPACE.

150



Attack Used Area under ROC curve
adduser 0.6893

hydra ftp 0.6428
hydra ssh 0.4690

java meterpreter 0.6858
meterpreter 0.7475
web shell 0.7158

Table IX
AREA UNDER THE CURVE FOR K-MEANS CLUSTERING CLASSIFIER USING

EUCLIDEAN DISTANCE ON THE REDUCED FREQUENCY FEATURE SPACE.

was classified as normal when it was within a distance d of a
cluster center. The distance parameter was chosen by finding
the maximum in cluster distance (dmax) and getting an evenly
spaced sample of 10 numbers from [0, dmax]. In my case, the
maximum distance is 0.7551. This calibration of the distance
parameter allows us to control the sensitivity with which I
classify a data point as anomalous, enabling the creation of
receiver operating characteristic curves.

After performing my computation, I plot the receiver op-
erating characteristic curves. They are presented in figure 9.
To assess the performance of my classifier, I compute the
area under the ROC curves and present the results in table
IX. I can see that in this case, the hydra ssh attack has bad
performance, while for the other attacks, the classifier has
moderate performance.

The authors of [23] do not comment on the area under the
ROC curves for the classifiers they used. Instead, they just
assess individual Precision (True Positive) and Fallout (False
Positive) rates. With my implementation, I can compute it. By
looking through figures 7, 8, 9 and the tables presenting the
area under the ROC curve, VI, VII, IX, I can see that the k-
means clustering algorithm is a bit more reliable. Additionally
k-means clustering is a lot cheaper computationally. The
training times for k-means clustering were at least one order
of magnitude less than those of k-nearest neighbours on the
computing resources I were using for this work.

As a final remark for using k-means clustering for anomaly
detection, I should mention that conceptually, it has a lot
of similarities to the Gaussian Mixture Model pioneered by
Roberts et al.[5].

XII. SUPPORT VECTOR MACHINES

A. Linear SVM on reduced frequency feature space

A natural step in continuing my analysis of the ADFA-
LD 12 dataset further than Xie et al.[23] are Support Vector
Machines. As a first, I will keep the methodology I used
previously, meaning I will work with the first nine principal
components of the training set so I can compare my results
before moving forward. I will train an SVM model, using a
linear Kernel, for each attack separately. More Specifically,
I will use the SVC class from the scikit-learn library[28].
Moreover I will use different values of the regularisation

Attack Used Regularisation parameter
adduser 10

hydra ftp 0.05
hydra ssh 0.5

java meterpreter 0.1
meterpreter 10
web shell 1

Table X
OPTIMAL REGULARISATION PARAMETER FOR SVM’S WITH LINEAR
KERNEL ON ADFA-LD 12 FOR DIFFERENT ATTACK PROFILES IN THE

REDUCED FEATURE SPACE.

Attack Used Area under ROC curve
adduser 0.8303

hydra ftp 0.6978
hydra ssh 0.7801

java meterpreter 0.8628
meterpreter 0.9105
web shell 0.8354

Table XI
AREA UNDER THE CURVE FOR SVM’S WITH LINEAR KERNEL ON

ADFA-LD 12 FOR DIFFERENT ATTACK PROFILES ON THE REDUCED
FEATURE SPACE.

parameter C to better map the hypothesis space of available
classifiers. The different values of C I used are:

[0.05, 0.1, 0.5, 1, 5, 10, 50]

I can see the first results of this computation in figure 10
where I plot various performance points on a True Positive
versus False positive map. From there, I conclude that for some
attacks, namely web shell and meterpreter, the performance of
the SVM classifier is not influenced significantly by the choice
of regularisation parameter. On the other hand, hydra ftp and
hydra ssh attacks are significantly influenced. For each attack,
I note the best-performing value, as I can see in table X.

I proceed with computing the optimum linear SVM clas-
sifier for each attack and then plot its receiver operating
characteristic curve. The results are shown in figure 11. The
area under the curve for each classifier is shown in table XI.
As usual, the hydra attacks are my worst performers, while
the meterpreter attacks are my best performers.

At this stage, I am able to compare my results, from table
XI, with those of the k-means clustering algorithm, from table
IX. It is quite clear that Support Vector Machines are a more
accurate and reliable classifier for every attack. On average,
the SVM classifier has 0.15 higher area under the curve.

Moving forward, I want to see the performance of Support
Vector Machines on the dataset as a whole instead of training
them specifically for each attack. Hence I will treat the
problem as a two class classification problem with my classes
being normal behavimy and attack behaviour. To get a better
idea of the performance of my classifier in this case, I will
use cross-validation. To address the issue of class imbalance
in my dataset, I will use stratified 8-fold cross-validation13.

13I chose 8-fold cross-validation instead of 10-fold due to the class
imbalance against my attack set and the inner divisions within it. The change
is minor but helps us sample the attack set better across folds.

151



Regularisation (C) Precision Fall out
0.125 0.62± 0.08 0.20± 0.03
0.25 0.62± 0.08 0.20± 0.03
0.5 0.62± 0.08 0.19± 0.03
1 0.62± 0.08 0.19± 0.04
2 0.61± 0.09 0.19± 0.03
4 0.63± 0.07 0.20± 0.03
8 0.64± 0.08 0.21± 0.04
16 0.64± 0.10 0.23± 0.05
32 0.64± 0.11 0.24± 0.06

Table XII
8-FOLD STRATIFIED CROSS VALIDATION RESULTS FOR VARIOUS

REGULARISATION PARAMETER VALUES OF SVM CLASSIFIER WITH
LINEAR KERNEL. RESULTS ARE PRESENTED WITH MEAN AND STANDARD
DEVIATION FOR TWO METRICS. TRUE POSITIVE RATE (PRECISION) AND

FALSE POSITIVE RATE (FALL OUT). REDUCED FREQUENCY FEATURE
SPACE WAS USED FOR TRAINING AND VALIDATION.

Regularisation (C) Precision Fall out
0.125 0.62± 0.10 0.17± 0.04
0.25 0.64± 0.09 0.17± 0.04
0.5 0.66± 0.09 0.16± 0.04
1 0.68± 0.06 0.16± 0.04
2 0.76± 0.07 0.19± 0.05
4 0.81± 0.08 0.19± 0.04
8 0.91± 0.04 0.18± 0.03
16 0.91± 0.05 0.18± 0.03
32 0.92± 0.04 0.18± 0.03
64 0.93± 0.05 0.16± 0.04
128 0.92± 0.06 0.16± 0.04

Table XIII
8-FOLD STRATIFIED CROSS-VALIDATION RESULTS FOR VARIOUS

REGULARISATION PARAMETER VALUES OF SVM CLASSIFIER WITH
LINEAR KERNEL. RESULTS ARE PRESENTED WITH MEAN AND STANDARD
DEVIATION FOR TWO METRICS. TRUE POSITIVE RATE (PRECISION) AND
FALSE POSITIVE RATE (FALL OUT). COMPLETE FREQUENCY FEATURE

SPACE WAS USED FOR TRAINING AND VALIDATION.

Going even further, I run my simulation for various values of
the regularisation parameter. I present my results in table XII.
I can see that I get better performance14 for low regularisation
values. The optimum value is C = 0.5.

B. Linear SVM on the complete frequency feature space

Moving further away from the approach of Xie et al.[23] I
investigate the application of support vector machines in the
frequency feature space without reducing it’s dimensionality
through principal component analysis. I pool all of my dataset
together and perform 8 fold stratified cross validation training
a linear SVM classifier. I present my results in table XIII.

As I can see by comparing tables XII and XIII using the
complete frequency feature space yields significantly better
results. The precision rate is increased noticeably, and the
fallout rate is slightly decreased. The computation cost was
not noticeably increased for the whole frequency feature space
when running my scripts.

C. Recursive feature elimination

14Increased performance means higher difference between precision and
fallout rates, with 1 being perfect classification results.

Moving forward with my analysis of the ADFA-LD 12
dataset, I will conduct recursive feature elimination. I will
train an SVM classifier with a linear kernel for a two-pattern
classification problem. My two classes will be attack and
normal behavior. A property of k-fold cross-validation is that
only a small part of the dataset is used as a validation
set, meaning my under-represented attack class may not be
appropriately represented in the validation set. For this reason,
I will use a sampling method to perform cross-validation. I will
be sampling my dataset with the StratifiedShuffleSplit method
of scikit-learn[28] 6 times, and my training and validation
sets will be equal in size. To create a scorer and assess the
performance of my classifier, I will use the Precision (True
Positive rate) and Fall out (False Positive rate) ratios. But
because recursive feature elimination works by optimising one
measure, I will use their difference, namely:

Scorer = Precision− Fallout

When Scorer=1 I have perfect classification and if Scorer is 0
I are classifying everything as attack behaviour. After writing
my code and performing the necessary computations, I plot
my results in figure 12.

By looking at the plot, I see that when I start removing
the less relevant features from the complete feature space, my
performance, measured by my scorer metric, remains steady.
That plateau remains with minimal variation until I have 50
remaining features with a global maximum of 54 features.
Then it has a small decline that keeps increasing and becomes
a steep decline after I am left with only 25 features. Therefore
I can deduct that the information content required to perform
proper identification of attacks in the context of a two pattern
classification problem is contained in the 54 most relevant
features.

XIII. ONE CLASS SUPPORT VECTOR MACHINES -
OUTLIER DETECTION

Before I finish my analysis of ADFA-LD 12 on the fre-
quency feature space, I will study one class, Support Vector
Machines. The 1-class SVM algorithm has been introduced by
Schölkopf et al.[6] and can work with a variety of kernel func-
tions just like normal SVM classifiers. From my preliminary
results, I saw that linear kernels performed badly. After various
trials, I found optimum performance on sigmoid kernels with
the parameters γ = 0.05 and c0 = 3.

One more tricky thing about the 1-class SVM classifier
is that on the training set, I am asked to specify the upper
bound for the fraction of training data that I can tolerate being
incorrectly classified. In order to study the upper bound’s (ν)
effects, I will test its performance by recursively performing
cross-validation on a range of values for ν. The results of my
first test can be seen in figure 13 and table XIV.

By studying the results of figure 13 and table XIV, I see
that there is big volatility for different numbers of ν. Moreover,
the standard deviation of my metrics is quite variable, which
is something I didn’t expect. This might be due to the
relatively small number, 10, of re-sampling or because of

152



ν Precision Fall out
0.1 0.55± 0.10 0.19± 0.05
0.2 0.53± 0.04 0.22± 0.03
0.3 0.59± 0.02 0.30± 0.02
0.4 0.82± 0.04 0.41± 0.01
0.5 0.89± 0.01 0.49± 0.02
0.6 0.910± 0.001 0.61± 0.01
0.7 0.912± 1 · 10−16 0.73± 0.10
0.8 0.91± 6 · 10−4 0.81± 0.10
0.9 0.93± 0.007 0.904± 0.009
1.0 1.0± 0.0 1.0± 0.0

Table XIV
EXPLORING 1-CLASS SVM WITH A SIGMOID KERNEL TO ASSESS ITS

PERFORMANCE DEPENDING ON THE UPPER BOUND FOR THE FRACTION OF
TRAINING ERRORS. SHUFFLESPLIT METHOD WAS USED FOR

CROSS-VALIDATION TO CREATE TWO, EQUAL IN SIZE, NORMAL BEHAVIOR
DATASETS FOR TRAINING AND VALIDATION. OPTIMAL PERFORMANCE

FOR UPPER BOUND ν = 0.4.

ν Precision Fall out
0.35 0.67± 0.04 0.36± 0.01
0.36 0.68± 0.04 0.37± 0.01
0.37 0.71± 0.06 0.39± 0.02
0.38 0.75± 0.04 0.40± 0.01
0.39 0.77± 0.04 0.40± 0.01
0.40 0.83± 0.04 0.41± 0.02
0.41 0.85± 0.01 0.42± 0.02
0.42 0.85± 0.02 0.42± 0.02
0.43 0.858± 0.001 0.431± 0.010
0.44 0.862± 0.002 0.449± 0.006
0.45 0.864± 0.004 0.45± 0.01

Table XV
EXPLORING 1-CLASS SVM WITH A SIGMOID KERNEL TO FIND ITS

OPTIMUM PERFORMANCE DEPENDING ON THE UPPER BOUND FOR THE
FRACTION OF TRAINING ERRORS. THE SHUFFLESPLIT METHOD WAS USED

FOR CROSS-VALIDATION TO CREATE TWO EQUAL-IN-SIZE,
NORMAL-BEHAVIOR DATASETS FOR TRAINING AND VALIDATION.

OPTIMAL PERFORMANCE FOR UPPER BOUND ν = 0.41.

some structure within my dataset that I haven’t identified yet.
Further investigation is needed to determine this. In order
to identify the best-performing value of the upper bound for
misclassification, I repeat my procedure on a smaller range of
values. The results of my computation are presented in figure
14 and table XV.

From table XV, I can identify ν = 0.41 as the best-
performing value for the upper bound on training errors.
Moreover, from looking at both tables XIV and XV, I can
see that the fallout rate follows the value of ν, which makes
sense given that the training data are all from normal behavior
and the fallout rate represents misidentification of normal data.

Because the LIBSVM library[30] implementing the One-
class SVM algorithm that I use does not predict probabilities
for a data point to be classified as outlier but only classifies
them as such I cannot create ROC curves. However, by
observing the performance of the algorithm depending on the
bound for the training error at figures 13 and 14, I see that
there is a resemblance to a receiver operating characteristic.

Regularisation (C) Precision Fall out
0.125 0.93± 0.02 0.068± 0.010
0.25 0.93± 0.02 0.062± 0.009
0.5 0.92± 0.02 0.054± 0.009
1 0.91± 0.02 0.049± 0.007
2 0.91± 0.02 0.047± 0.006
4 0.88± 0.03 0.046± 0.007
8 0.86± 0.03 0.043± 0.006
16 0.84± 0.04 0.041± 0.005
32 0.81± 0.03 0.038± 0.004

Table XVI
8-FOLD STRATIFIED CROSS-VALIDATION RESULTS FOR VARIOUS

REGULARISATION PARAMETER VALUES OF SVM CLASSIFIER WITH
LINEAR KERNEL. RESULTS ARE PRESENTED WITH MEAN AND STANDARD
DEVIATION FOR TWO METRICS. TRUE POSITIVE RATE (PRECISION) AND

FALSE POSITIVE RATE (FALL OUT). TWO-SEQUENCE FEATURE SPACE WAS
USED FOR TRAINING AND VALIDATION.

XIV. 2-SEQUENCE ANALYSIS OF THE ADFA-LD 12
DATASET

After my analysis of the ADFA-LD 12 dataset on the
frequency feature space, I proceed to analyze it on the two-
sequence feature space.

I begin by giving a specific definition of the two sequence
feature space I will use. As I have said, every point of my
dataset consists of a series of kernel operating system calls.
Instead of counting the frequency of a individual system calls
in each point I will count the frequency of combinations of
two subsequent system calls in each point. From my previous
explorations of my dataset, I know that I have 175 distinct
system calls present. Out of the 30625 possible combinations
of 2-sequences, only 3792 are present in my dataset. Hence,
my two-sequence feature space has 3792 dimensions.

XV. SUPPORT VECTOR MACHINES

I start my analysis of the two-sequence feature space by
addressing my data as a two-pattern classification problem. I
will use a linear kernel for my SVM classifier. I will test its
performance on various values of the regularisation parameter
(C) performing stratified cross-validation. After computing the
necessary calculations, I get the results shown in table XVI.

I see that I get my best-performing results when I have
C = 0.25. By comparing the results from tables XIII and XVI
I see that the two-sequence feature space yields significantly
better results compared to the full frequency feature space.
This is to be expected since the two frequency feature spaces
capture more information from the dataset.

Moving forward, I will conduct recursive feature elimination
to see how much information is contained in each feature. I
will use the same procedure as before. I will train my classifier
to distinguish a two-pattern classification problem. I will use
the Stratified Shuffle Split method to perform cross-validation.
In order to make the computation time reasonable, I will use
a reduction step of 24 features (out of a total of 3792) per
iteration. After performing my computation, I get the results
depicted in figure 15. I see that performance plateaus at 240
features and stays relatively stable afterward, with an obtuse
maximum at 2088 features. Below 240 features performance

153



ν Precision Fall out
0.1 0.55± 0.03 0.20± 0.01
0.2 0.58± 0.01 0.245± 0.009
0.3 0.72± 0.02 0.32± 0.02
0.4 0.826± 0.004 0.41± 0.02
0.5 0.876± 0.006 0.50± 0.01
0.6 0.9269± 0.0008 0.64± 0.07
0.7 0.930± 0.001 0.76± 0.09
0.8 0.936± 0.004 0.86± 0.07
0.9 0.9560± 0.0005 0.909± 0.007
1.0 1.0± 0.0 1.0± 0.0

Table XVII
EXPLORING 1-CLASS SVM WITH A SIGMOID KERNEL TO ASSESS ITS

PERFORMANCE DEPENDING ON THE UPPER BOUND FOR THE FRACTION OF
TRAINING ERRORS. THE DATASET WAS FEATURE-ENGINEERED ON A

TWO-SEQUENCE FEATURE SPACE. THE SHUFFLESPLIT METHOD WAS USED
FOR CROSS-VALIDATION TO CREATE TWO EQUAL-IN-SIZE,

NORMAL-BEHAVIOR DATASETS FOR TRAINING AND VALIDATION.
OPTIMAL PERFORMANCE FOR UPPER BOUND ν = 0.4.

drops significantly, hence I can say that the core information
content on normal and attack classes is contained in the 240
most important features.

XVI. ONE CLASS SUPPORT VECTOR MACHINES -
OUTLIER DETECTION

The last step of my analysis of ADFA-LD 12 on the two-
sequence feature space is studying one class, Support Vector
Machines. Again, from my preliminary results, I saw that
linear kernels performed badly. On the other hand the sigmoid
kernel gives us good performance. In order to get results
directly comparable to the ones on the frequency feature space,
I will use the same parameters that I used before, γ = 0.05
and c0 = 3.

As I have already said, one more tricky thing about the 1-
class SVM classifier is that on the training set, I am asked to
specify the upper bound for the fraction of training data that I
can tolerate being incorrectly classified. In order to study the
upper bound’s (ν) effects on the two-sequence feature space,
I will test its performance by recursively performing cross-
validation on a range of values for ν. The results of my first
test can be seen on figure 16 and table XVII.

While figure 16 gives us a good overview of the per-
formance of one class support vector machine the iteration
step, 0.1, for ν (maximum error ratio tolerance for training
set) is too big to tell us the optimum value. Hence I re-
iterate with smaller iteration step, 0.01, for values between
ν ∈ (0.35, 0, 45) to find the best performing value. I see my
results for ν = 0.36.

XVII. VALIDATION AND TESTING

Before I do that, however, it is important to mention a
key part of my work that has been lurking in the shadows.
This is validation and testing. All of my numerical analysis
has been done through computations. It is easy to make a
mistake that introduces a bug in the Python code, but it is
very hard to identify that by looking at the results. Therefore,
I took the approach that every step of a numerical calculation,
once implemented, should be tested through the form of debug

ν Precision Fall out
0.35 0.788± 0.008 0.366± 0.007
0.36 0.805± 0.008 0.379± 0.012
0.37 0.807± 0.006 0.380± 0.013
0.38 0.820± 0.008 0.398± 0.011
0.39 0.822± 0.003 0.403± 0.012
0.40 0.827± 0.003 0.410± 0.010
0.41 0.832± 0.005 0.428± 0.018
0.42 0.832± 0.004 0.424± 0.013
0.43 0.835± 0.004 0.435± 0.011
0.44 0.839± 0.005 0.448± 0.012
0.45 0.849± 0.006 0.464± 0.017

Table XVIII
EXPLORING 1-CLASS SVM WITH A SIGMOID KERNEL TO FIND ITS

OPTIMUM PERFORMANCE DEPENDING ON THE UPPER BOUND FOR THE
FRACTION OF TRAINING ERRORS. THE SHUFFLESPLIT METHOD WAS USED

FOR CROSS-VALIDATION TO CREATE TWO EQUAL-IN-SIZE,
NORMAL-BEHAVIOR DATASETS FOR TRAINING AND VALIDATION.

OPTIMAL PERFORMANCE FOR UPPER BOUND ν = 0.36.

messages printed by the terminal or my log files in order to
verify them. This approach has not only helped us identify
bugs in my code immediately, but it has also shaped how my
code was written to make it more resilient.

A key success of that testing was the proper identification
of the integers representing the kernel system calls. Initially,
through manual exploration of the data files, sampled ran-
domly, I had assumed that they were represented by the
integers from 1 to 325. Numerical testing, in this case mostly
through summation of the relevant probabilities, revealed that
something was missing. A more rigorous exploration of the
dataset revealed the problem.

XVIII. RESULTS ANALYSIS

My first goal was to replicate the results of Xie et al.[5].
I successfully achieved that and implemented some trivial
improvements that allowed us to fully compute the ROC curve
and the area below it.

I then moved further by implementing Support Vector Ma-
chines classifiers. Comparing the area under the ROC curves
for the various cases described in tables VII, VIII, IX, and XI is
not very straightforward, so I created figure 18 to condense that
information. I can see that k-means clustering and k-nearest
neighbors with squared standardized Euclidean distance are
the worst performers, while support vector machines perform
a lot better.

I then moved to the complete frequency feature space. When
formulating the problem as a two pattern classification I saw,
from tables XII and XIII, a significant improvement in perfor-
mance. This means that the feature reduction approach used by
Xie et al.[5] was not efficient in maintaining the information
contained in the dataset while reducing its dimensionality. To
that extent, I tried recursive feature elimination, and I saw
that I could eliminate up to 121 out of 175 dimensions of
the feature space with no loss of performance. As I can see
from figure 12, I could even go below that, and unless I keep
less than the 35 most informative features, I am not sacrificing
much on the performance of my algorithm.

154



I then moved to try an unsupervised learning approach using
one-class support vector machines, where I saw a significant
drop in performance, as evident from my results on tables XIV
and XV.

My next step was to move to a feature space that captured
more information from the dataset, the two-sequence feature
space. To compare how much my performance improved, I
created figure 19, which takes information from tables XIII
and XVI. As an evaluation metric I use the scored I have
defined earlier as the difference between precision and fall
out rate.

Last but not least, I compare the performance of one class
support vector machine. This algorithm acts as outlier detec-
tion, and from what I see from figures 19, 20, its performance
is significantly poorer compared to support vector machines
classifier. I can also see that there is very little difference
between the two feature spaces. This is in contrast with my
previous results when intrusion detection was framed as a two-
pattern classification problem.

XIX. FURTHER RESEARCH

This work was intended to initiate research on the the
field of intrusion detection through modern machine learning
approaches. As such it leaves a lot of open questions. One
straightforward path to go forward is to take note of the
system calls identified as more relevant from recursive feature
elimination. Someone with expertise in computer science and,
more specifically, with the Linux kernel can give us domain
input and provide useful information for more efficient feature
engineering.

Another avenue for further research is to check on the
scalability of the algorithms I am using. The AWID 2015
dataset by kolias et al.[25] is a very good candidate. Its
compressed size is 10Gb, making it a very good candidate
for assessing algorithms that are to be trained in a distributed
setting or high-performance computer systems. It is a modern
dataset using tools representative of the current IT landscape,
and results on it will have applications on current networks.

Last but not least, there is great room for improvement in
using better kernels in unsupervised outlier detection. The fact
that I saw very small performance increase by moving to the
two-sequence feature space means that I not training the one-
class support vector machine algorithm on a feature space
that it can take full advantage of. Taking advantage of kernel
methods has the potential to greatly improve performance. And
it even if it doesn’t, it is useful to know the extent of each
algorithm’s efficiency. This enhances my overall understanding
in the Machine Learning field and helps us find areas in need
of novel approaches.

REFERENCES

[1] G. Creech, J. Huy Generation of a new IDS Test Dataset: Time to
Retire the KDD Collection, 2013 IEEE Wireless Communications and
Networking Conference (WCNC)

[2] M. Schellekens Car hacking: Navigating the regulatory landscape,
Computer Law & Security Review 32 (2016) 307 - 315

[3] C. Sun, C. Liu and J. Xie Cyber-Physical System Security of a Power
Grid: State-of-the-Art, MDPI - Electronics open access journal.

[4] I. Raghav, S. Chhikara, N. Hasteer Intrusion Detection and Prevention
in Cloud Environment: A Systematic Review, Journal of Network and
Computer Applications, Volume 36, Issue 1, January 2013, Pages 25-41

[5] S. Roberts and L. Tarassenko, A probabilistic resource allocating
network for novelty detection, Neural Computation, vol. 6, no. 2, pp.
270 - 284, 1994.

[6] B. Schölkopf, J. Platt, J. Shawe-Taylor, A. Smola, R. Williamson,
Estimating the Support of a High-Dimensional Distribution, Neural
Computation, Vol. 13, No. 7, pp. 1443-1471, 2001.

[7] P. Hayton, B. Scholkopf, L. Tarassenko, and P. Anuzis, Support vector
novelty detection applied to jet engine vibration spectra, in NIPS, pp.
946 - 952, 2000.

[8] L. Clifton, H. Yin, and Y. Zhang, Support Vector Machine in Novelty
Detection for Multi-channel Combustion Data, Proceedings of the third
international conference on Advances in Neural Networks - Volume Part
III (2006)

[9] B. Farran, C. Saunders and M. Niranjan, Machine Learning for Intrusion
Detection: Modeling the Distribution Shift, 2010 IEEE International
Workshop on Machine Learning for Signal Processing (MLSP 2010)

[10] M. Bhuyan, D. Bhattacharyya, and J. Kalita (2014) Network Anomaly
Detection: Methods, Systems and Tools, IEEE Communications Surveys
& Tutorials, Vol. 16, No. 1, 2014

[11] M. Ahmed, A. Mahmood, J. Hu A survey of network anomaly detection
techniques, Journal of Network and Computer Applications. Vol. 60,
January 2016, p. 19-31

[12] C. Kruegel, D. Mutz, W. Robertson, and F. Valeur, Bayesian event
classification for intrusion detection, in Proc. 19th Annual Computer
Security Applications Conference, 2003

[13] M. H. Bhuyan, D. K. Bhattacharyya, and J. K. Kalita, RODD: An Effec-
tive Reference-Based Outlier Detection Technique for Large Datasets,
in Advanced Computing. Springer, 2011, vol. 133, pp.76–84.

[14] I. Kang, M. K. Jeong, and D. Kong, A differentiated one-class classifi-
cation method with applications to intrusion detection, Expert Systems
with Applications, vol. 39, no. 4, pp. 3899–3905, March 2012.

[15] X. Xu, Sequential anomaly detection based on temporal-difference
learning: Principles, models and case studies, Applied Soft Computing,
vol. 10, no. 3, pp. 859–867, 2010

[16] M. Amini, R. Jalili, and H. R. Shahriari, RT-UNNID: A practical solu-
tion to real-time network-based intrusion detection using unsupervised
neural networks, Computers & Security, vol. 25, no. 6, pp. 459–468,
2006

[17] A. Borji, Combining heterogeneous classifiers for network intrusion de-
tection, in Proc. 12th Asian Computing Science Conference on Advances
in Computer Science: Computer and Network Security. Springer, 2007,
pp. 254–260.

[18] C. Aggarwal, A. Hinneburg, and D. Keim, An empirical evaluation of
supervised learning in high dimensions, ICML ’08: Proceedings of the
25th International Conference on Machine learning Pages 96-103

[19] S. J. Stolfo, W. Fan, W. Lee, A. Prodromidis, and P. K. Chan, Cost-
Based Modeling for Fraud and Intrusion Detection: Results from the
JAM Project, in Proc. DARPA Information Survivability Conference and
Exposition, vol. 2. USA: IEEE CS, 2000, pp. 130–144.

[20] J. McHugh, Testing intrusion detection systems: A critique of the 1998
and 1999 Darpa intrusion detection system evaluations as performed
by Lincoln laboratory. ACM Transactions on Information Systems and
Systems Security, Volum 3, Issue 4, pages 262 - 294, 2000

[21] M. Mahoney and P. Chan, An Analysis of the 1999 DARPA/Lincoln
Laboratory Evaluation Data for Network Anomaly Detection, Recent
Advances in Intrusion Detection, Volume 2820 of the series Lecture
Notes in Computer Science pp 220-237

[22] M. Ahmed, A. Mahmood, J. Hu, A survey of network anomaly detection
techniques, Journal of Network and Computer Applications. Vol. 60,
January 2016, p. 19-31

[23] M. Xie, J. Hu, X. Yu, and Elizabeth Chang Evaluating Host-Based
Anomaly Detection Systems: Application of the Frequency-Based Algo-
rithms to ADFA-LD, 11th International Conference on Fuzzy Systems
and Knowledge Discovery, 2014

[24] M. Xie, J. Hu and J. Slay Evaluating Host-based Anomaly Detection
Systems: Application of the One-class SVM Algorithm to ADFA-LD,
Proceedings of the 11th IEEE International Conference on Fuzzy Sys-
tems and Knowledge Discovery (FSKD 2014), Xiamen, 19-21 August
2014, 978-982.

[25] C. Kolias, G. Kambourakis, A. Stavrou, and S. Gritzalis Intrusion
Detection in 802.11 Networks: Empirical Evaluation of Threats and a

155



Public Dataset IEEE Communication Surveys & Tutorials, Vol. 18, No.
1, 2016

[26] G. van Rossum, Python tutorial, Technical Report CS-R9526, Centrum
voor Wiskunde en Informatica (CWI), Amsterdam, May 1995.

[27] D. Ascher, P. F. Dubois, K. Hinsen, J. Hugunin, and T. Oliphant,
Numerical Python Lawrence Livermore National Laboratory, UCRL-
MA-128569, 1999

[28] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O.
Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas,
A. Passos, D. Cournapeau, M. Brucher, M. Perrot , E. Duchesnay
Scikit-learn: Machine Learning in Python, Journal of Machine Learning
Research, volume 12, pages 2825 - 2830, 2011

[29] J. Hunter, Matplotlib: A 2D graphics environment, Computing In Science
& Engineering, vol. 9, no. 3, pp 90 - 95, 2007

[30] C. Chih-Chung, L. Chih-Jen, LIBSVM: A library for support vector
machines, ACM Transactions on Intelligent Systems and Technology,
Volume 2, Issue 3 (2011)

156


