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Abstract 
The implementation of deep learning models for semantic segmentation on autonomic devices is a 
promising direction in developing intelligent systems capable of analyzing visual information 
independently. The present study explores the possibilities and challenges of using such models, 
employing theoretical analysis, systematization, and generalization of their usage in autonomic 
devices. Our research reveals significant potential for this technology, identifying key parameters 
influencing model efficiency on resource-constrained devices and proposing implementation 
recommendations. Furthermore, we highlight contemporary approaches to model encryption, 
emphasizing the need for a comprehensive security approach combining hardware and software 
solutions. The study concludes that advancements in this field will contribute to more efficient 
autonomic systems across various applications, including computer vision and robotics. By addressing 
technical challenges and security considerations, this research paves the way for robust autonomic 
visual processing systems, potentially revolutionizing industries reliant on intelligent image analysis. 
The relevance of this study lies in its practical insights into implementing deep learning models for 
semantic segmentation in resource-constrained environments, contributing to the evolving field of 
autonomic intelligent systems. 
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1. Introduction

Computer vision is a rapidly evolving field of artificial intelligence (AI) focused on creating 
technologies that replicate human visual perception. It combines elements from computer 
science, optics, mechanics, and neuroscience to develop algorithms for analyzing and 
interpreting visual data [1]. A key area within this field is semantic image segmentation, which 
classifies each pixel in an image according to specific categories, providing deeper insights as 
compared to simple object detection [2]. Semantic segmentation models generate a 
segmentation map where each pixel is color-coded based on its semantic class, allowing for the 
creation of masks that highlight distinct areas of an image [3]. This technique is crucial for 
applications in satellite imagery, UAV data analysis, robotics, medicine, and automotive 
industries. Current approaches to semantic segmentation include traditional methods that rely 
on feature extraction and pixel classification, which can be time-consuming and dependent on 
domain expertise [4]. To overcome these limitations, deep learning techniques using neural 
networks have been developed, significantly enhancing accuracy and adaptability. Prominent 
architectures for semantic segmentation include Fully Convolutional Networks (FCN), U-Net, 
DeepLab, and PSPNet. However, integrating these neural networks into autonomic devices with 
limited or no Internet access represents the challenging task. This work aims to explore the 

Information Systems and Technologies (IST-2024), November 26-28, 2024, Kharkiv, Ukraine 
∗ Corresponding author. 
† These authors contributed equally. 

 mykhailo.trusov@karazin.ua (M. Trusov); dmytro.uzlov@karazin.ua (D. Uzlov) 
 0009-0001-4390-5307 (M. Trusov); 0000-00Q3-3308-424X (D. Uzlov) 

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).  



170 

application of deep learning models in such devices and analyze effective integration methods 
without constant connectivity. 

2. Utilization of deep learning models in autonomic devices for semantic
image segmentation 

Recent research in semantic segmentation demonstrates that deep learning models, particularly 
Fully Convolutional Networks (FCNs) and other neural networks, can be effectively deployed on 
autonomic devices without Internet access. This is achieved through the on-device inference, 
where trained models are deployed directly on the device for local predictions [5]. This approach 
reduces latency, enhances privacy, and allows operation in areas with limited or no Internet 
connectivity.  

Edge computing is another concept that places computational resources closer to data 
sources, enabling local processing. For instance, smart cameras can analyze video streams 
directly on the device using pre-trained models, reducing dependence on constant internet 
connections and facilitating real-time data processing [6].  

Specialized embedded systems like NVIDIA Jetson, Google Coral, and Intel Movidius are 
widely used for efficient neural network execution on autonomic devices. These platforms are 
optimized for neural network operations, significantly accelerating computations compared to 
standard processors while maintaining low power consumption [7]. 

Various optimization techniques are employed to ensure efficient neural network operation 
on resource-constrained devices. These include model compression methods such as 
quantization, pruning, and knowledge distillation, which reduce computational complexity while 
maintaining accuracy. Hardware acceleration using GPUs, TPUs, or AI-specific chips is another 
crucial optimization approach, leveraging specialized computing devices optimized for neural 
network operations [8].  

Combining model compression and hardware acceleration methods achieves a synergistic 
effect, significantly enhancing neural network efficiency on embedded systems. This 
comprehensive optimization approach opens up broad prospects for implementing complex AI 
algorithms in mobile and embedded devices, expanding their application scope and increasing 
the autonomy and intelligence of edge devices. 

Offline data processing is another aspect of modern embedded systems that allows devices to 
perform complex tasks without constant internet connectivity. This approach is particularly 
useful in situations where devices collect and process data in batches, performing segmentation 
tasks autonomicly and only occasionally connecting to the internet for updates or additional data 
transmission. 

3. Key determinants of trained model storage requirements

The memory requirements for deploying trained models on devices are influenced by several 
key factors. Model complexity plays a significant role, with more intricate architectures generally 
demanding more storage space. The specific neural network architecture chosen also impacts 
memory usage, as some designs are inherently more efficient than others.  

Optimization techniques are crucial in managing memory consumption. Quantization, which 
reduces the precision of model weights, can substantially decrease memory requirements, often 
compressing models by up to 75%. Pruning, another effective method, removes less critical 
weights or neurons, further reducing model size while maintaining performance. Knowledge 
distillation, where a smaller model learns to emulate a larger one, can result in compact models 
with comparable effectiveness. 

The choice of model is also pivotal. Lightweight architectures like MobileNetV2, designed 
specifically for mobile applications, typically occupy only 10-15 MB after optimization [9]. In 
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contrast, more complex models such as full-sized Fully Convolutional Networks (FCNs) or advanced 
architectures like ResNet can require hundreds of megabytes or even several gigabytes [10]. 

Additional considerations include the memory needed for runtime environments (e.g., 
TensorFlow Lite, ONNX Runtime) and auxiliary data such as class labels or configuration files. 
These components contribute to the overall memory footprint and must be accounted for in 
deployment planning. 

Broadly speaking, memory requirements can be categorized as follows: 10-50 MB for simple 
tasks and lightweight models, 50-200 MB for moderately complex models with some 
optimization, and 200 MB to several GB for sophisticated, high-performance models. 

By leveraging efficient architectures and applying appropriate optimization techniques, it is 
possible to deploy neural networks on devices with limited memory resources. This capability 
enables many automated devices to operate autonomicly, even in scenarios with limited or no 
Internet connectivity. 

4. Implementation of trained models in custom software products

To use trained models in custom applications, specialized libraries or frameworks are necessary 
[11]. Here are some popular options for various platforms: 

 TensorFlow Lite which is designed for mobile and embedded devices, supporting Python,
C++, Java, and Swift. It offers model conversion, inference APIs, and hardware
acceleration support.

 ONNX Runtime which represents a cross-platform environment for ONNX format models,
supporting multiple languages and optimized for various hardware accelerators.

 PyTorch Mobile which is useful for deploying PyTorch models on mobile devices,
supporting Python, Java, and C++.

 Core ML which stands for the framework for iOS and macOS applications, primarily used
with Swift and Objective-C.

 NVIDIA TensorRT which represents a toolkit for high-performance deep learning
inference on NVIDIA GPUs, supporting Python and C++.

 OpenCV which is characterized as an open-source computer vision and machine learning
library, supporting C++, Python, Java, and MATLAB.

The choice of library or framework depends on project specifics, target platform, and 
performance requirements. Here's a brief example of integrating with TensorFlow Lite in 
Python: 

import tensorflow as tf
import numpy as np

# Load the TFLite model and allocate tensors.
interpreter = tf.lite.Interpreter(model_path="model.tflite")
interpreter.allocate_tensors()

# Get input and output tensors.
input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()

# Prepare input data
input_data = np.array(your_input_data, dtype=np.float32)

# Run inference
interpreter.set_tensor(input_details[0]['index'], input_data)
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interpreter.invoke()

# Get output data
output_data = interpreter.get_tensor(output_details[0]['index'])
print(output_data)

5. Security of deep learning models for autonomic devices

In the context of using deep learning models for semantic image segmentation on autonomic 
devices, ensuring the security of trained models is crucial. Modern approaches to security in this 
domain focus on hardware-based solutions and comprehensive encryption strategies. 

One key component of this security framework is the use of Hardware Security Modules 
(HSMs) [12]. These specialized physical devices play a vital role in protecting deep learning 
models by performing cryptographic processing and providing secure key storage. By 
integrating HSMs into autonomic devices for semantic image segmentation, encryption and 
decryption operations can be conducted in a secure environment, preventing unauthorized 
access to trained models and protecting intellectual property. 

Complementing HSMs, Trusted Platform Modules (TPMs) offer another layer of hardware-
based security [13]. These secure cryptoprocessors store cryptographic keys and perform 
cryptographic operations, creating a reliable hardware foundation for protection. TPMs ensure 
that models can only be decrypted through authorized operations, significantly enhancing 
security even if physical access to the device is obtained. 

While hardware solutions provide a strong foundation, a truly comprehensive approach to 
protecting deep learning models combines robust encryption with stringent access control. 
Models should be encrypted using advanced algorithms like AES-256, with encryption keys 
stored securely in HSMs or TPMs. This ensures data integrity even if models are extracted from 
the device. Building upon this encryption, access control should implement multi-factor 
authentication (MFA) and a multi-layered authentication and authorization system, restricting 
access to verified users only [14]. 

6. Conclusions

Overall, the present study highlights the potential of deep learning models for semantic image 
segmentation on autonomic devices, enabling visual analysis without constant external 
computing resources. Key to implementation is the optimization of model size and efficiency 
through techniques like quantization, pruning, and knowledge distillation, making them suitable 
for resource-constrained devices. Deployment requires specialized frameworks such as 
TensorFlow Lite or PyTorch Mobile, with optimization for specific hardware crucial. Security is 
paramount, necessitating a comprehensive approach combining hardware and software 
solutions. Future developments focus on improving neural network architectures, developing 
new optimization methods, and creating specialized hardware accelerators. While challenges 
persist, the field promises significant advancements in intelligent visual processing systems, 
opening new possibilities for autonomic devices across various applications. 
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